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ABSTRACT

Mandelbrot introduced the notion of fractal dimension to
describe, in a rigorous and quantitative way, the roughness of
natural surfaces. Such a fundamental concept has suggested the
application of fractal theory to characterize the scattering from
rough surfaces. In this paper we deal with an appropriate
electromagnetic scattering model suitable for microwave remote
sensing applications.

Keywords: Electromagnetics, Scattering, Natural surfaces,
Fractal geometry.

INTRODUCTION

In remote sensing community great relevance is given to the
surface-electromagnetic wave interaction with natural surfaces
[1]. Within this framework it is obviously unrealistic to
assume that the surface morphology is limited by the scale of
observation. To explore this intriguing problem some high-
level stochastic approaches [2] turned out to be appropriate.
However, some low-level sound physical approaches can now
be envisaged. In particular, this is possible by means of the
significant concept of fractal geometry which has been recently
introduced by Mandelbrot [3]. As a matter of fact, it allows a
viable and analytical direct insertion of the microscopic
roughness within the scattering model [4].

The problem of plane wave backscattering from a natural
terrain is investigated. We first model the macroscopic surface
in terms of facets, large in terms of the incident wavelength, so
to apply the Kirchhoff solution to the scattered far-field; then,
we model the stochastic scattering contribution within each
facet in terms of the Weierstrass-Mandelbrot fractal function
[3].

Use of fractal concepts in electromagnetic scattering is not new
(4]. However, for remote sensing applications, it is advisable o
generalize the two-dimensional Weierstrass-Mandelbrot fractal
function including random amplitude coefficients.

As a matter of fact, we note that in imaging radars a relevant
point is the speckle effect. In order to take this into account, we
need to properly model the fading occurring over the
backscattered electromagnetic field. This is possible by means
of a more complete stochastic characterization of the
Weierstrass-Mandelbrot function, where amplitude and spatial
frequency terms are not deterministic but random.
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In addition, we note that natural surfaces are not well-modelled
by perfectly conducting bodies, so that Fresnel reflection
coefficients must be included in the scattering process.

The paper is structured as follows: first we outline the two-

- dimensional Weierstrass-Mandelbrot random fractal function.

Then, we employ such a description in order to model the
microstructure of the natural relief and to design a fractal-based
approach to electromagnetic modelling. Subsequently, a number
of examples are presented and discussed from qualititative and
quantitative point of view. In particular, first-order statistical
analysis is accomplished and compared with other available
results. Finally, conclusions are collected.

THE SURFACE MODEL

In this Section we describe an appropiate fractal model for
natural surfaces. It is based on the two-dimensional
Weierstrass-Mandelbrot random fractal function [5,6], i.e.,:

Ly = ZC,A'"i siln[li(xcos 0, +ysin@;)+ ‘P,.] , (D

i=1

wherein C;, O, ¥, are three random variables which account for
the random amplitude, the random frequency, and the random
phase behaviours, respectively; A (>1) is the seed of the
geometrical progression which accounts for the spatial spectral
components of the surface.

Some comments are in order. First of all, we stress that the
Weierstrass-Mandelbrot random fractal function exhibits the
self-similarity behaviour in the mean sense, that is:

L,y = {(Ax, Ay 1(D=-2) (2)
where,
D=2+1"%, (3)

is the roughness fractal dimension of the surface.

In order to proceed further we need to specify the random
coefficients. We reasonably assume ©;, ¥, to be uniformly
distributed random variables over the whole trigonometric
circle and C; to be a zero-mean Gaussian random variable with
unitary variance. Former random variables are assumed to be
mutually independent. Accordingly, the {(x,y) variance is equal
to:



4)

AN e 1
VAR[“”’)]‘z_Z/l T2y

if |ﬂ.’2“| < 1. Obviously, to the purpose 1o model a surface with
a standard deviation o, the random amplitude coefficients must
be spread according to the following standard deviation o:

oc=o\2(A%% - 1) .

Former relationship allows to link classical and fractal surface
descriptor o and D, respectively, and it is relevant on the
applicative viewpoint.

In practical implementation of eq.(1), truncation to a finite
number N of tones is necessary. This leads to a modified
surface variance (see eq.(4)) and therefore eq.(5) must be recast,

ie.
222 - 1)
Oc=0 _]—ATM .

We conclude that the Weierstrass-Mandelbrot random fractal
function is a suitable candidates to model the rough
microstructure in an efficient and sound physical manner.

(5)

(6)

THE ELECTROMAGNETIC MODEL

In this Section we consider the problem of evaluating the
electromagnetic return from natural surfaces whose low spatial
frequencies satisfies the conditions imposed by the Kirchhoff
approximation and whose high spatial frequencies are described
by means of the Weierstrass-Mandelbrot random fractal
function.

Let the incident field be:

E, =eE, exp(-jk- R) )
wherein k = kk is the incident wave propagation vector, € is a
unit polarization vector, E, is the incident field amplitude and
R is the vector distance. The scattered field E,is:

E, ='U{jwu,,g-[ﬁxH]+Vx(g-[ﬁxE])}dS . (®
N

where G is the free-space dyadic Green function,

For microwave radar imaging, it is appropriate to use the
natural facet model for the evaluation of the backscattered field,
which, in the Kirchhoff physical optics approximation, is given
by:

- Jkexp(- jkR)

E
! 47R

E, (1~ kk)- F(a,b,c)J’exp(ij -p)dA (9)
A

wherein (a,b,c) are the components of the normal to the facet A,
and p the vector describing it. The function F(-) depends on
the local Fresnel reflection coefficients as well as on the
incidence angle, and polarimetry [7].

We have in general that the backscattering process over the
facet introduces depolarization of the wave, so that we must
generalize the reflectivity function in (2 * 2) matrix form:

EX
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E/

, (10)
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with E™" the horizontal and vertical polarized components of
the electrical field. The reflectivity matrix can be written as
follows [7]:

7=D0)§ ()

wherein § takes into account the macroscopic polarimetric
-

behaviour of the surface and D(-) describes the microscopic
scattering behaviour of the elementary facet.
For the £ entries we have [7]:

2(asin® - beos )
Sun = 2 . 7’
a” + (b sind +ccos 9)

[azRq —(bsin® +ccos 19)2R,,] ,

(12)

2a(c sin® — bcos B)(b sin®d + ccos B) )
a® +(bsin® + ccos 8)?

(Rp+Rq) ,

Sy =Sy = (13

2(c sin® ~ bcos ) )
w @ + (b sind + ccos )’

[(b sind + ccos 9)’ R, —azRP] ,

(14)

wherein 9 is the incidence angle, R, and Rq are the Fresnel
reflection coefficients related to the l‘(J)cal incidence angle, the
facet slopes and the electromagnetic permittivity, permeability
and conductivity of the surface [7].

For the reirradiation diagram D(-) we have [7]:

D(-)=”exp(j2k-p)dA as)
A

We now employ the formerly described Weierstrass-Mandelbrot
random fractal function to describe the microstructure of the
elementary facet of dimension 2X * 2Y lying on the plane z=0.
We have that this implies:

k p=k.xkykl) , (16)
and
oo N N
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wherein u; =2k, G, 1™,

ILLUSTRATIVE EXAMPLES

The first-order statistical behaviour of the fading associated
to the backscattered electromagnetic field is investigated. The
numerical study is based on the model sketched previously; we
consider two similar cases which differ only for the fractal
dimension. A facet size of 2 #m * 2 m, and an electromagnetic
plane wave, whose wavelength is 12.5 cm, impinging at 30°



degrees with respect to the normal to the mean plane have been
considered. The surface microstrucure has been described by 6
tones and a geometrical seed of 2e/ 3 has been chosen. Fractal
dimensions of 2.60 and 2.85 have been considered for the two
cases at hand. In Figs.1(a) and 2(a) the surface microstructures
are depicted, while in Figs. 1(b) and 2(b) the amplitude
probability density functions (pdfs) of the backscattered
electrical field are shown. In Figs.1(c) and 2(c) the phase pdfs
are also shown.

As first result we note that both amplitude and phase pdfs are
consistent with other available results [1,2], In particular, the
amplitude pdfs remind the Rayleigh pdf, while the phase pdfs
appear to be uniformly distributed. This suggests further
systematic study in order to consider the fading dependence on
the fractal dimension.

CONCLUSIONS

A fractal-based approach to electromagnetic modelling
suitable for imaging radar applications has been depicted and
some first illustrative examples have been presented. They
suggests further systematic study in order to consider the
fading statistical behaviour with respect to the fractal features.
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Fig.1:(a) Surface profile, (b) amplitude and (c) phase pdfs of
the backscattered electrical field relevant to a microstructure
of D=2.60.
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Fig.2:(a) Surface profile, (b) amplitude and (c) phase pdfs of
the backscattered electrical field relevant to a microstructure
of D=2.85.
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