IGARSS’93

1993 INTERNATIONAL GEOSCIENCE AND
REMOTE SENSING SYMPOSIUM (IGARSS’93)

S

Better Understanding of

Earth Environment

Volume IV

Kogakuin University

Tokyo, Japan

> August 18-21, 1993 o
IEEE ziC
IEEE Catalog Number: 93CH3294-6
Library of Congress Number: 93-77594




FRACTAL BROWNIAN MODEL FOR SAR IMAGE ANALYSIS:
EDGE DETECTION AND CLASSIFICATION ISSUES.

Maurizio Migliaccio *, IEEE Member, Daniele Riccio **, IEEE Member

* Istituto Universitario Navale, Istituto Teoria e Tecnica delle Onde Elettromagnetiche, Via A.Acton 38, 80133 Napoli, Italy.

** CO.RLS.T.A., P.le Tecchio 80, 80125 Napoli, Italy.

ABSTRACT

Feature analysis is used to explore and improve SAR
imagery and it is therefore of great relevance. In this
paper, the Fractal Brownian Model for SAR image edge
detection and classification is considered. Such a scheme
has been formerly employed in analagous but different
research fields (e.g., medical images) providing quite
interesting results. First experimental results on SAR
imagery are here presented and discussed showing
analogies and differences with the latters.

Index Terms: Synthetic Aperture Radar (SAR), Fracial
geometry, Edge-detection, Classification.

MOTIVATIONS

Feature extraction is of primary interest in SAR (Synthetic
Aperture Radar) data processing and applications.
Unfortunately, as well known, SAR images are
characterized by speckle noise which encumbers any data
exploitment. In order to overcome such problems many
techniques, appropriately tailored to the issue at hand, have
been illustrated.

Recently, a novel geometry has been formulated: the fractal
one (1,2].

Fractals do constitute a new and promising approach to
image analysis and classification. In fact, fractal based
techniques have been widely and successfully employed in
different but analagous fields as for instance medical
imaging [3]. Lately, their application in SAR imagery
analysis attracted some interest (although fractals have not
always explicitely accounted) (4,5]. Notwithstanding their
application in SAR image context calls for further work in
order to fully exploit their potenuals.

Within such framework a key point ariscs: cfficient
estimation of fractal dimension D. As matter of fact it may
drastically hamper time efficiency [3]. llence, for our
purposes, we are concermed with fractal techniques which
should be fast and accurate (in terms of more classical
schemes).

A popular and interesting approach is the one relying on
the Fractal Brownian Model (FBM), i.e. the Wiener
stochastic process extended to the fractal domain [2].

In this paper we present and discuss former fractal model
within SAR imaging context therefore showing analogics
and differences with some others imaging feature extraction
applications [3,6,7].

The paper is organized as follows: first we outline the
FBM, then we describe the employed method and finally

we present some first results. Some conclusions and
recommendations for future work end this paper.

FRACTAL BROWNIAN MODEL

First of all, we recall that a sct whose Hausdorff-
Besicovitch dimension is greater than its topological
dimension is recognized as fractal. Morcover, fractals are
continuous but not differentiable and show a fine detailed
structure at any (arbitrarily) small scale. We emphasize
anyhow that fractalness holds for physical data sct only on
part of the observable data.

An important fractal feature is their correlation over
different scales of magnification; accordingly self-similarity
or sclf-affinity properties are invoked [1,2]. Furthermore,
fractals can be either determistic or stochastic.

Because of the fact that many natural phenomena have been
explained in terms of fractal models this ficld has gaincd
more and more interest. Among them the Fractal Brownian
Model is a very popular and effcctive onc.

The Fractal Brownian Model is a random sclf-affine fractal
which can be also thought as an cxtension of the classical
Wicner process whencver the paramcter H is no more
constrained to be cqual to 1/2 but differently lies within the
range 0,1 [1,2]. Persistent behaviour is implied when the
Hurst exponent H is greater than 1/2, whereas an anti-
persistent random process is modelled when H is smaller
than 1/2 [2].

Namely, let I(x,r) to be the image and x and r the azimuth
and range coordinates, we have accordingly:

I(x,r)=I(x+ Ax,r+ Ar)

(\/ Ax® + AP )”

Pr

<5 |=F() ,

(1)

wherein Pr means probability, F(§) is a cumulative
distribution function (cdf) and H is referred as the Hurst
exponent and is related to the fractal dimension D. In the
case at hand (image points defined by two coordinates) this
relationship specifics as follows [2]:

D=3-H . (2)
Morcover, we emphasize that in eq.(1) the cdf F(8) must be

Levy stable (1], i.e. it must satisfy the following functional
cquation:

5, F(8)+5,Fy(8)=5F(8) . 3

with the constraint,
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5,7 +s,° =5 . 4)

Finally, it must be noted that eq.(2) leads to the classical
Wiener process whenever H=1/2 and F(§) stems from a

zero-mean, unit-variance gaussian [2].
Eq.(1) can be written in a more suitable (for our purposes)
form, that is:

log E[[I(x + Ax,r+ Ar) - I(x, r)l] +

—Hlog[\/sz +Ar’ ] =K .

wherein £ is for statistical mean and K is a constant which
depends on the assumed cdf (see eq.(1)).

(5)

- METHOD

Rationales of the employed sheme are very simple: edges
fractal dimension is lower than 2 [3], therefore a D
estumator intrinsically performs an edge detection. Morcover
D value is meant to be a classifier discriminator [3-7]. In
fact, the fractal dimension tends to be uniform over a single
class (3].

From previous discussion stems the umportant item of
fractal dimension estimation. Among different procedures
we have sclected the spatial one, commonly called fractal
plot whose essential rationale is given by eq.(5).

Basically a scatterplot of 10gE[|AI” vs. logAd (see eq.(5))

must be drawn for any investigating window centered over
the image pixel whose D has to be estimated. A linear
regression among such a data measures the Hurst exponent
and therefore D [2]. Upper and lower scale limits are
intrinsically defined by a linearity test [8].

Some more comments arc appropriate. First of all, we note
that Ad is not meant to be integer as well as in the original
Pentland approach (7] and therefore differently to Ref.[3].
Then, we stress that, with respect to Ref.[3], timme efficiency
has been improved. In fact, when the window size has been
chosen, an original program creates a distance map that is
used throughout the subsequent estimating procedure in
order to speed it up. Such a strategy allows to examine a
128x128 pixel image by a 3x3 sliding window in a time of
order of 10 sec instead of more than 1h!.

Finally, we note that previous CPU time must be
considered for reference only, because computer technology
is alrecady willing to significantly speed  former
computational time up: both employing sequential machine
and parallel architecture.

RESULTS

We applied former fractal method to actual SAR unagery.
The SAR image used for our first investigations was
collected over Matera test site under the SAR-580 Italian
campaign. In fig.1 is shown the corresponding multilook
intensity image (256 grey-levels). We recognize in the
image, different agricultural fields, some roads as well as a
certain number of comer reflectors displayed for calibration
purposes.

The procedure previously outlined has been employed in
order to generate the fractal map shown under fig.2. A 5x5
shding window has been used and the grey-levels are

' Test performed on a 6000-210 VAX-DIGITAL computer,
normal task conditions.

proportional to the fractal dimension D; we note that that
the detected edges are darker as predicted by the model. A
thresholded image is finally shown in fig.3. Subsequent
procedures are usually employed in order to clean the
thresholded image and to connect broken edges [9]. They
are not here applied since not fundamentally relevant for the
main scopes of this paper.

A comment about these results is now due.

First of all, we note that most of the edges within the image
have been automatically revealed by the fractal-based
procedure, henceforth encouraging use of this methodology
in order to perfom a SAR image edge detection.

On the contrary we underline that the only use of the fractal
dimension is by no means an efficient fractal discriminators
among natural classes. Therefore the sole D estimation is
generally not able to perform SAR image classification as
well demonstrated in other fields [6].

In particular, a feature classification vector may be suitably
considered when classification issue is in order. It is
straightforward that estimation of K (see eq.(5)) can
improve classification accuracy at very limited additional
computational expenses. In addition, lacunarity [6] of the
image can also improve classification results; noting,
anyhow, that patterns with the same fractal dimension and
lacunarity may appear quite different. Therefore, use of
multifractals as well as non-isotropic approaches can be
furtherly taken into account [10,11]. As important
drawback, it must be stressed that estimation of latter fractal
features is very time consuming.

Let us turn back our attention on the edge detection issue,
now.

Fractal scheme accomplished over one (or almost) look
image has yielded poor results whereas, as already stated,
use of multi-look images provided much better edge
detection. This result is a pretty one and beyond brute force
experimentations pose a theorctical problem: Does
{ractalness hold for SAR imagery?

Pentland proves that a sufficient test can be performed
cstimating D over an image and its averaged down replicas,
whenever such a measure is stable the test is passed [7]. Of
course, D stability is of fundamental importance in
classification issue whereas has minor impact on the edge
detection issue, provided a discrimator index (measured
among desired and undesidered fcatures) is guaranteed [7].
Stated in other words, whenever fractal edge detection
scheme is in order, we nced that the edge detector
discriminator is stable among different magnifications.

A conjecture is meant to be true: fractalness is exhibited
only by multilook SAR imagery. A more detailed measure
of such occurrence is obviously given by the speckle
nature; we note anyhow that the FBM edge detection
scheme does not require its explicit knowledge (sce eq.(5)).
Further investigations on the field are certainly appropriate
and we mean to use simulated images [12], too.

CONCLUSIONS

Fractal Brownian Model for SAR image analysis has been
inquired.

As a conclusion, we experimented that edge detection fractal
scheme does provide poor results when applied on SAR
single-look images, thus differently with medical oncs.
Actually pre-processed SAR images gives much better
resulls.

Therefore such a fractal edge detection procedure yields
good results at resolution expenses. We emphasize that such
trade-off must be always paid in more traditional schemes in
order o regularize the ill-posed problem at hand [13].
Finally analogies with classical application of fractal
mcthods [6] have been recognized when classification is in
order; that is fractal dimension estimation docs not provide
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by itself a sufficient criteria. ‘Therefore, employment of some
additional fractal features must be considered as future
work; keeping in mind that benefits must be also measured
in tcrms of computational time.

ACKNOWLEDGEMENTS

The authors wish to thank Dr. Riccardo Lanari, at the
CO.RLS.T.A_, Napoli, who provided the actual SAR image
used in this paper.

Fig.3: Thresholded binary image of image depicted under
[ig.2.
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