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ABSTRACT

This paper considers simulation of the SAR raw signal of
natural landscapes. Within this framework, the format of the
input data is critical. In fact, they are usually described by
digital input maps which are too scarcely sampled for the
application we are concerned. In our case, we deal with Digital
Elevation Models, i.e., with the elevation input data. In order
to interpolate such a data we employ the classical cubic spline
interpolation and a fractal method, the latter based on the
random midpoint displacement technique. Corresponding SAR
images are generated and presented. Objective norms are further
employed in order to compare simulated results with actual
ones.
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MOTIVATIONS

A SAR raw signal simulator is a powerful tool for both
mission design and retrieval algorithms. To be useful, such a
tool must rely on a sound electromagnetic model, which takes
into account the surface-wave interaction, and on an efficient
SAR system simulator [1].

Within this framework, SAR raw signal simulation of
canonical scenes, i.e., described by sampled analytical functions
[1], as well as of natural scenes [2], i.e., described by finite-
resolution digital maps, are both of interest. In this paper we
specifically address the second class of situations and the
related problems.

A critical point is the accuracy of the input data involved in
the simulation scheme. In particular, we focus on the Digital
Elevation Model (DEM) input data. These are traditionally
generated with an accuracy related to the original topographic
map and usually too scarcely sampled for SAR simulation
purposes [2]. In order to use such data we need to interpolate
them [2]. Among several possible interpolation schemes, we
employ an innovative fractal-based [3-6] one, suitable for
natural landscapes {3-6], at variance with the conventional
cubic spline method.

Simulation examples are presented and discussed. In
particular, the accuracy of simulation is tested by comparison
with actual images.

INTERPOLATION METHODS
In this Section we briefly outline the two interpolation
methods we employed in order to generate the denser DEMs to

be used as input elevation data to our SAR raw signal
simulator {1].
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The interpolation problem can be defined as the attempt to
estimate the values of a function in between starting from its
values at isolated points. In order to be attractive from the
numerical point of view, the local interpolation schemes are of
interest, i.e. schemes which requires knowledge of only a finite
and possibly limited number of data.

Among several possible interpolation schemes, the
polynomial interpolation is very often employed. This scheme
assumes that the function to be interpolated belongs to the set
of polynomia of finite degree ¢. In order to get a stable
representation of the function to be interpolated, this is not
usually described by a unique polynomium but the input data
are subdivided in intervals and within each of them an
interpolating polynomium is found.

A very popular polynomial interpolation is the spline one.
Such an interpolation scheme estimates the polynomial
coefficients by means of knowledge of the function and its p-
derivatives at isolated points.

In particular, the cubic spline case is often encountered. In this
case, g is equal to 3 while p is equal to 2. For the one
dimensional case we use different polynomia in each sub-
intervals [x,.;.x,] such that the resulting interpolating function
results continuous up to its second derivatives included over
the whole input data range [a,b].

Extension to the two-dimensional case is straightforward and
efficient algorithms can be found in order to implement such an
interpolation method [7].

Former procedure is able to represent a deterministic
function. In the case of natural surfaces random interpolation
methods are more suitable. Specifically, it has been
demonstrated that natural surfaces exhibit random fractalness
and therefore a convenient method for their simulation is based
on this property [3-6]. Hence, we consider a fractal-based
interpolation method, in order to generate the denser DEM to
be used in our simulator. This is the random midpoint
displacement method that is a recursive method which allows
to get a 2N * 2M output matrix data from a N * M input digital
map in a single step. We first have to locate the N * M input
data point in a matrix of dimension 2N - 2M. The available
data are located in the odd-odd matrix positions and we need
to estimate the data in the even-even positions as well as in the
odd (even)- even (odd) positions. Due to the different
topological setup, two cases must be considered: in the even-
even case, the data are found by means of the following
formula:

Zn,m)=1f4[z(n-1,m-1D)+z(n+1,m-1)+

wn-Lm+D+zn+1,m+ D)+ V1-22 2|4l 0 G

()]
while in the other case, the data are obtained by:




2(n,m)=1/4[z(n,m -1+ z(n—-1,m)+

2+, m)+z(n,m+ D]+ 27 H21- 2 A 6 G,
(2)

wherein z is the elevation, and the matrix entries are the
corresponding planar coordinates.

Eqgs.(1) and (2) need some further clarification. The function G
is a gaussian random variable with zero mean and unit variance,
Ar is the two dimensional input data spacing, H is the Hurst
exponent, which is related to the local fractal dimension and &
is a fractal Brownian model feature [6]. These latter quantities
are locally estimated by means of a preliminary procedure
whose rationale is given by the fractal Brownian model [3-6]
which has been recognized to effectively represent natural
surfaces [3-6].

THE SIMULATION ALGORITHM

In this Section we briefly outline the SAR raw signal
simulator SARAS [1].
A sidelooking radar system scans the scene, characterized by its
complex reflectivity map Hx,r)!, by periodically emitting
modulated pulses and with a uniform? along track velocity. For
a stationary (temporally invariant) reflectivity function, the raw
signal s(-) can be written in the general form [1]:

s(x',r’)=Ji[g(x—x’,r—r';x,r) y(x,r)dxdr , 3)

where g(-) is the unit response function. Note that g(*) depends
explicitly on the antenna pattern and on the impulse
modulation [1].

A SARAS keypoint is the convenient evaluation of the
reflectivity map; this is accomplished by means of an
electromagnetic model rather than picking it up from a data
base. This model is based on surface scattering computation
and knowledge of surface topography and complex permittivity
is required [1]. The surface relief is modelled by means of
planar facets large in terms of the incident wavelength, so 1o
correctly apply the Kirchhoff approximation for computing the
backscattered field. The facets’ density is properly chosen [1].
Hence, assuming an incident local plane wave over the single
facet, we get [1):

_ Jkexp(-jkR)

E.!‘
4nR

Eo(g-l?l?)JF(a,b,c)exp[ij~p1, (@)
A

where E, is the incident field amplitude, k its vector
wavenumber, / the unit matrix, (a,b,c) the components of the
normal to the facet A, and p its vector coordinate. The vector
F(-) is a function depending on the Fresnel coefficients
pertaining to the facet, hence it takes care of polarization
issues: its expression is given in {1].

Efficient algorithms have been introduced te account for
geometric distortion problems, without hampering processing
time requirements [1].

! This is the ratio between the backscatiered and the incident
field.

2 Velocity perturbations may affect the flight, causing
undesired changes, from pulse to pulse, in yaw, pitch and roll
angles. In such case motion compensation techniques must be
included in data processing.
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An important point addressed in SARAS is the inclusion of
statistical features. The echo radar from each facet, evaluated by
means of eq.(4), must be considered as a realization of a
stochastic process. First order and, if appropriate, higher order
statistics must be taken into account, which correctly include
roughness properties of the facet. An important case is the
Rayleigh distributed scattered field, although other statistical
classes may be considered. Inclusion of the statistical issues is
very important, being related to the grainy appereance of the
image (speckle). For a wider discussion on this issue, see
Ref.[1].

Once the reflectivity map has been determined, computation
of eq.(3) is in order. A two-dimensional approach is
accomplished, in view of its ability to simply include SAR
aberrations [1]. Numerical operations in the transformed
Fourier Domain are convenient due to availability of powerful
Fast Fourier Transform (FFT) codes. Eq.(3) becomes:

SEM) =GE) NEM)

where (E,n) are properly stretched [1] Fourier conjugate
variables to (x,r) and capital letters indicate FTs of
corresponding space domain functions. Stretching is necessary
to take into account SAR aberrations [1].

The FT G(*) has been (asymptotically) evaluated in a closed
form [1], and proper decompositions of FFT have been
suggested [1] to cope with memory requirements and parallel
processing. In this way, an efficient SAR raw signal simulator
is possible, and an accurate simulation, including range
migration, range curvature [1}, and depth of focus effects [1]
can be performed.

In summary, the simulation code consists of a first part, the
most expensive from computation time point of view, which
takes care of the evaluation of the reflectivity function. A
second part performs the FT of ¥-) and mutiplies it by the
(analytically evaluated) transfer function of the system, i.e., the
FT of the unit response. The third final step computes the
inverse FT to proceed to the output (x’,r’) domain.

(&)

EXAMPLES

The SAR simulator we formely described has been applied
by using the ERS-1 mission data and the elevation data
relevant to a mountainous area nearby Napoli, Italy. The input
elevation data are sampled at 240 m * 240 m while the ERS-1
resolution is of the order of 4 m * 16 m. We generated two
denser DEMs by means of the cubic spline interpolation
method and the random midpoint displacement fractal-based
method. Once these DEMs are obtained they can be inserted as
input data to SARAS. Other scene input data are set as
homogeneous and constant over the two cases. Corresponding
SAR simulated images are depicted in Figs.1 and 2,
respectively. In Fig.3 it is shown the corresponding actual
image for comparison purposes.

As first comment we note that, in spite of the dramatically
sparse input data, the results are remarkable. A visval test
shows that the simulation based on the denser DEM achieved
by means of the spline method provides good results, too.
Comparative objective norms are advisable. To this end, we
measured the ratio between the statistical mean and the
standard deviation of four sub-regions (Tab.I). Region A is on
the top left B on the top right, C on the bottom right, while D
is on the bottom left of the images. Note that within each
region a dominant mountain peak can be detected. In order to
perform some geometrical norms (distances) over the three
image planes we referred to these peaks; results are shown in
Table II. In particular, the first two rows provide the distance
(along azimuth) between the dominat peaks in regions A and




B, and C and D, respectively. The other two rows refer to the
distance (along range) between the dominant peaks in regions
A and D and B and C, respectively. These results provide a
remarkable and strong support 10 the use of the fraciai-based
interpolation method in order to achieve a denser DEM.
Further systematic study is accomplished in Ref.[2].

Fig.1: SAR simulated images whose DEM has been generated
by means of the cubic spline interpolation method.

Fig.2: SAR simulated images whose DEM has been generated
by means of the random midpoint displacement method.

Fig.3: Actual SAR ERS-1 image.

Actual Fractal Spline
A 2.878 2.220 1.491
B 2.046 1.778 1.585
C 2.505 2.173 1.354
D 2.597 2.398 1.279

Table I: Relevant to the ratio between the statistical mean and
standard deviation over 4 sub-regions extracted from actual

and simulated imagery.

Actual Fractal Spline
A-B (azim.) 113 113 13
C-D (azim.) 122 122 22
A-C (range) 89 89 89
D-A (range) 74 74 74
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Table II: Relevant to some geometrical distances (in pixels)
measured over the actual and simulated SAR images.

SUMMARY

We considered in this paper the simulation of the SAR raw
signal relevant to a natural landscapes. Within this framework
the input data format is a relevant issue. In particular, we were
concerned with the elevation data usually provided by means
of a Digital Elelevation Model. These data are often too
scarcely sampled for the application at hand; therefore
appropriate interpolation methods must be employed. We tested
the cubic spline and the random midpoint displacement
methods. Objective norms over the simulated and actual images
strongly support the use of the fractal-based interpolation
method in order to get a denser DEM.

ACKNOWLEDGEMENTS

The authors are indebted to ESA-ESRIN, Frascati, Roma
(Italy) for making available the actual ERS-1 image shown in
this paper. The authors wish also to thank Dr. Donato Lustrini,
previously at the LR.E.C.E.-C.N.R. Napoli and the student
Raimondo Marino.

REFERENCES

[1]1  G.Franceschetti, M.Migliaccio, D.Riccio, G.Schirinzi,
"SARAS: a SAR Raw Signal Simulator”, IEEE Trans.
Geosci. Remote Sensing, GE-30, 110-123, 1992,

[2] G.Franceschetti, M.Migliaccio, D.Riccio, "SAR
Simulation of Actual Ground Sites Described in Terms
of Sparse Input Data”, submitted to IEEE Trans.
Geosci. Remote Sensing.

(31 K.J.Falconer, Fractal Geometry: Mathematical
Foundations and Applications , Chichester: John Wiley
& Sons, 1990.

[4] B.B.Mandelbrot, The Fractal Geometry of Nature, San
Francisco: W.H.Freeman & Co., 1983.

[5) J.S.Feder, Fractals, New York: Plenum Press, 1988.

[6] A.P.Pentland, "Fractal-Based Description of Natural
Scenes”, IEEE Trans. Pattern Anal. Machine Intell.,
PAMI-6, 661-674, 1984.

{77 W.H.Press, B.P.Flannery, S.A.Teukolsky,
W.T.Vetterling, Numerical Recipes in C: the Art of
Scientific Computing, Cambridge: Cambridge
University Press, 1988.

This work was supported in part by the Italian Consiglio
Nazionale delle Ricerche (CNR grant
93.00653.07.115.27295).



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


