Sub-Surface Radar for the EJSM mission: discussion on environmental noise limiting performance

G. Alberti¹, Y. Berquin², B. Cecconi³, L. Bruzzone⁴, W. Kofman², A. Herique², P. Schenk⁵, M.R.Santovito¹

¹ CO.RI.S.T.A., Naples, Italy, (alberti@unina.it) ²IPAG (UMR 5274), UJF-Grenoble 1/CNRS-INSU, Grenoble, France, ³ LESIA (UMR 8109), Observatoire de Paris/CNRS-INSU/UPMC, France, ⁴ Dept. of Information Engineering and Computer Science, University of Trento, Italy, ⁵ Lunar and Planetary Institute, Houston (TX), USA

Paper Number: EPSC-DPS2011-1797

10-1

10-1

10

10-

10-2

10-2

10

[Cecconi, 2010]

0.01 0.1

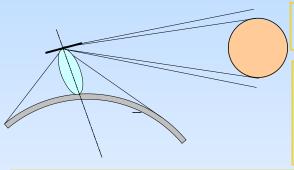
H2 10

AUCWm

Flux Density @ 1

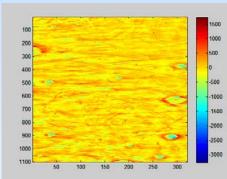
The Europa Jupiter System Mission (EJSM) is one of the major European Space Agency (ESA) missions in the Solar System currently under study. It is aimed at exploring Jupiter and its icy moon Ganymede. The Sub-Surface Radar (SSR) instrument is a radar sounder system at low frequency (HF/VHF band) designed to penetrate the surface of Ganymede icy moon of Jupiter for performing a subsurface analysis with a relatively high range resolution. The paper addresses the main sources of environmental noises that can limit the overall performance of the radar: the presence of a relevant Jupiter radio emission and the clutter caused by characteristics of planet's surface.

Recently scientific objectives of the mission, now called Jupiter Icy Moon Explorer (JUICE), has changed to include also exploration of Europa, by means of a pair of flybys


Two main sources of environmental noises have been identified so far as limiting in radar performance:

Jupiter's radio emission

Abstract


Moon's surface clutter

As far as the first noise source, it is well known that Jupiter is a so bright radio object that, as seen from Earth, it is exceeded only by the Sun. The most intense radio emission occurs in the frequency range between few megahertz and about 40 MHz [3], and it is expected to be due to cyclotron radiation originating in and above the ionosphere. These radio emissions dominate the galactic background, which is usually the major source of noise for planetary radar measurements. Decades of ground based and space based observations provided a good knowledge of the characteristics of these emissions. Ground based observations are limited by the terrestrial ionospheric cutoff which reflects out radio waves with frequencies lower than 10 MHz. Space based observations are usually limited at high frequencies because of the limited resources available on a spacecraft. In particular, by using data of the Planetary Radio Astronomy (PRA) experiment on both Voyager spacecrafts and by the Cassini Radio and Plasma Wave Science instrument (RPWS), the expected spectral flux density of Juppiter radiation at Ganymede.

The effects of such radiation noise on SSR instrument can be evaluated by taking into account either the direct part coming from Jupiter and the portion backscattered by Ganymede's surface [1].

As far as the clutter is concerned, its strength is controlled by statistical parameters of the surface topography. Classical parameters such as root mean square (RMS) height, RMS slope, or correlation length can be used to infer expected backscattering [2].

Eps of ice impurities

Concentration of impurities

LAT 12° LON 190°

150 m

Pixels 1134

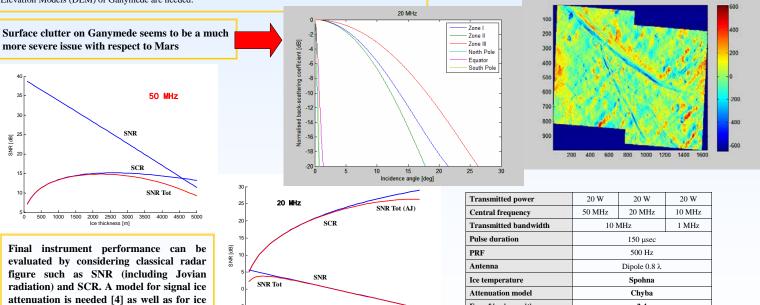
Res.

2.4

10 %

10 100

Frequency (MHz)


Res 600 m

LAT -15° LON 120°

Pixels 1110 x 320

o-DAM -

In this work also a fractal characterization of surface will be taken into account, because it has been shown that classical parameters usually employed to describe natural surfaces change when the scale at which the surface is observed changes. Conversely, fractal parameters of a natural surface are independent of the observation scale. The most useful fractal model for natural surfaces is the fractional Brownian motion (fBm), that has also the advantage of having an analytical evaluation of electromagnetic scattering. In both cases, suitable Digital Elevation Models (DEM) of Ganymede are needed.

References

temperature profile [5]

[1] Bruzzone L., Alberti G., Catallo C., Ferro A., Kofman W., Orosei R.: Sub-Surface Radar Sounding of Ganymede Jovian Moon, Proceedings of the IEEE 99, 2011.

1000 1500

[2] Berquin Y., Kofman W., Herique A., Beck P., Alberti G., Schenk P.: A study on Ganymedes surface topography: constraints for the Sub-Surface Radar (SSR) instrument, Geophys. Res. Lett. Submitted, 2011.
[3] Cecconi B., Hess S., Herique A., Santovito M.R., Santos-Costa D., Zarka P., Alberti G., Blankenship D., Bougeret J.-L., Bruzzone L., Kofman W.: Natural radio emission of Jupiter as interferences for radar investigations of the

3500

2000 2500 3000 Ice thickness [m]

[5] Cecconi B., Hess S., Herique A., Santovito M.R., Santos-Costa D., Zarka P., Alber icy satellites of Jupiter, Planetary and Space Science 59 (2011) 1-17.

[4] C.F. Chyba, S.J. Ostro, B.C. Edwards, Radar Detectability of a Subsurface Ocean on Europa, Icarus 134, 292-302 (1998).

[5] T. Spohna and G. Schubertb, Oceans in the icy Galilean satellites of Jupiter? Icarus 161 (2003) 456-467