

The goal is twofold:

- to assess the "stability" of SHARAD measurements, to understand the influence of geometric and processing effects in order to calibrate the data;
- to assess the feasibility of estimating superficial relative permittivity directly from echo power;

Method exploits full coverage of SHARAD data and, in principle, it would reach good accuracy from the great amount of possible data averaging

Radar Calibration

The final goal is to have a "calibrated" radargram where intensity variation would be related only to different dielectric properties of terrain

To this aim some kind of "reference signal" is needed For this preliminary analysis the area of North Ice Cap has been selected

Data should be corrected following a simple radar equation $P_r = \frac{P_t \ G^2 \ \sigma_0 \ A_r}{(4\pi)^2 \ H^4 \ L_{atm} \ L_{svs}}$

	And The Content	200	<u> </u>
Param	eter	Definition	Evaluable from
P,		Received Power	Sharad Scientific Data through Radar Calibration
P _t		Transmitted Power	Sharad System Definition
G		Gain of the Antenna	Sharad System Definition
σ_{o}		Radar Cross Section of the Target	Fractals Model
A,		Effective Aperture of the Receiving Antenna	Geometrical Model
Н		Distance from the Antenna to the Target	Sharad Ancillary Data
L _{atm} ,	L _{sys}	Atmospheric and System Losses	Radar Calibration

Backscattering Model

:

Planet's terrain is supposed to be a random rough process with fractal distribution (fBm)

In this way, a closed form for the backscattering coefficient can be derived under the Kirchhoff approach and the small-slope approximation

$$\sigma^{0}(\theta) = 2k^{2}\rho'(\theta)\cos^{2}\theta \int_{0}^{0} J_{\theta}(2k\tau|\sin\theta|)\exp(-2s^{2}k^{2}\tau^{2H}\cos^{2}\theta)\tau d\tau$$

$$s = T^{(1-H)}$$

Backscattering Model

Using MOLA data, a map of H and T has been produced for the whole planet

Map Resolution: 1°x 1°

Useful Area for Fractals Estimation: 128 Km x 128 Km

Calibration consists in the comparison between generic signal power wrt "reference power", i.e. evaluated over North Ice Cap

$$\frac{P_r}{P_{r,ice}} = \frac{\alpha \ Echo}{\alpha_{ice} \ Echo_{ice}} = \frac{\frac{P_t \ G^2 \ \sigma_{0,norm} \ R^2 \ A_r}{(4\pi)^2 \ H^4 \ L_{atm} \ L_{sys}}}{\frac{P_{t,ice} \ G_{ice}^2 \ \sigma_{0,norm,ice} \ R_{ice}^2 \ A_{r,ice}}{(4\pi)^2 \ H_{ice}^4 \ L_{atm,ice} \ L_{sys,ice}}}$$

 α = $\alpha_{i\,ce}$ is the generic conversion factor from DN to Watts

$$\frac{Echo}{Echo_{ice}} = \frac{\frac{G^2 \sigma_{0,norm} R^2 A_r}{H^4}}{\frac{G_{ice}^2 \sigma_{0,norm,ice} R_{ice}^2 A_{r,ice}}{H_{ice}^4}}$$

Over Ice it is possible to evaluate a sort of calibration constant

The needed accuracy can be achieved through the great number of analysed records

Mean value of K_{ice} is evaluated under the following constraints:

- •Night acquisition to limit atmosphere
- i oni zati on
 - Latitude to process only North polar cap
 - Signal to Noise Ratio to avoid weak echo processing
 - Slope for flat areas processing
 - Same operative mode (SS19)

	Parameter	Limit
	Solar Zenith Angle	95° ÷ 175°
	Latitude	= 85°N
	SNR	= 8
west com	Slope	= 1°
- Course		

Kice Evaluation

GHARAO

From the evaluated Kice it is possible to retrieve Fresnel coefficient directly from signal power

Permittivity retrieval

Analogous filtering criteria can be applied to the retrieval of Surface Relative Permittivity

	IIIII
Parameter	Limit
Solar Zenith Angle	100° ÷ 170°
SNR	≥8
Slope	≤ 2°
Epsilon	1 ≤ ε ≤ 100
and any and	
A second second	all and a second

Preliminary results

GHARAO

Mean = 4.57

Preliminary results

GHARAO

On the South Ice Cap few products with SS19 have been found

