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 INTRODUCTION 
 

 

This study has been developed in Naples at Co.Ri.S.T.A. 

(Consortium of Research on Advanced Remote Sensing System), in 

scenario of Post-EPS (EUMETSAT Polar System) mission. Post-

EPS satellites, developed by ESA (European Space Agency) on 

behalf of EUMETSAT (European Organisation for the Exploitation 

of Meteorological Satellites) provide more precise details about 

atmospheric temperature and humidity profiles, fundamental for 

weather forecasting and climate monitoring. This programme has 

brought a new era in the observations of Earth’s weather, climate 

and environment, and it will significantly improve operational 

meteorology, in particular Numerical Weather Prediction (NWP), 

able to compute forecasts ranging from a few hours up to 10 days 

ahead. Researchers of Co.Ri.S.T.A. are members of the science team 

devoted to study performances of the microwave radiometer for 

temperature measurements.         

The purpose of this work is to analyze Post-EPS radiometer 

coverage and Sun and Moon illumination angles respect to the 

radiometer, fundamental for mission success. For this aim an 

innovative method has been studied and developed, never used 

before in this kind of mission. The whole work has been developed 

using SPICE library, provided by the NAIF node of NASA Planetary 

Data System (PDS). SPICE is a collection of data, tools, routines, 

software, that allows scientists and engineers to share data analysis 

and scientific results come from past mission to improve future 
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mission analysis. Studying NAIF database, a good knowledge of 

SPICE system has been acquired, earning familiarity with this 

method. Using  MATLAB as interface, we have developed a 

software, creating apposite tools and data files (called kernels) for 

this detailed mission analysis.  

 

The thesis is organized in three chapters: 

Chapter 1 introduces SPICE system and key concepts, dealing with 

kernels’ functions, SPICE software and routines, focusing on 

MATLAB interface. 

Chapter 2 presents Post-EPS mission and the application of the 

SPICE system in mission scenario, illustrating kernels structure and 

their generation in order to analyze radiometer geometry. 

Chapter 3 shows results of illumination angles analysis and 

radiometer coverage.               
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 CHAPTER I: Introduction to NAIF library and 

fundamentals concepts 
 

 

1. Planetary Data System, NAIF and SPICE 
 

SPICE is an information system built to assist scientists and 

engineers in planning and interpret  scientific observations, 

modeling, planning and executing activities needed to conduct 

planetary exploration missions. SPICE system includes a large 

range of software, mostly in the form of subroutines to 

incorporate in application programs in order to read SPICE data 

files and to compute derived observation geometry, such as 

altitude, latitude, longitude, and illumination  angles. These 

software and routines are black boxes, the algorithm existing 

behind routines is not visible and they are for NAIF staff use 

only. SPICE is a collection of data, tools, routines, software, 

that allows scientists and engineers not only to make an 

accurate and precise mission analysis, but also to share data 

analysis and scientific results come from past mission to 

improve future mission analysis. The use of SPICE extends 

from mission concept development through the post-mission 

data analysis phase. In the following, we describe in detail 

SPICE system structure.  

The Planetary Data System (PDS ) archives and distributes scientific 

data from NASA planetary missions, astronomical observations, and 
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laboratory space measurements. The PDS is organized as a 

federation of 8 Nodes  and several Subnodes (see Fig.1.1): 
   

 
Fig. 1.1: Planetary Data System block diagram. [9]  

 

• The Atmosphere Node is responsible for the acquisition, 

preservation, and distribution of all atmospheric data from all 

planetary missions (excluding Earth observations); 

• the Geosciences Node deals with data that are relevant to the 

geosciences disciplines, the study of surfaces an interiors of 

terrestrial planetary bodies. Its primary goal is to ensure that the 

geosciences data sets coming from each planetary missions are 

properly documented and archived; 

• the Planetary Plasma Interactions Node is responsible for the 

acquisition, preservation, and distribution of field and particle data 

from all planetary missions; 
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• the Imaging Node maintains and distributes the archives of planetary 

image data acquired from NASA’s missions. Its primary goal is to 

enable the science community to perform image processing and 

analysis of the data; 

• the Rings Node deals with archiving and distributing scientific data 

sets relevant to planetary ring systems. Most of this data sets are 

from Voyager missions, Hubble telescope and other Earth-based 

telescopes; 

• the Small Bodies Node provides data from comets, asteroids an 

interplanetary dust; 

• the Navigation and Ancillary Information Facilities (NAIF) Node is 

responsible for design and implementation of the SPICE concept, 

such as archiving, distributing and accessing observation geometry 

and related ancillary data used in mission design, mission evaluation, 

observation planning and science data analysis; 

• the Engineering Node provides systems engineering support to the 

entire PDS, dealing with global aspects such as standards (data, 

software, documentation), technology investigations, catalogue 

development an implementation. 

 

NAIF serves as the “ancillary data node”, archiving and distributing 

the SPICE kernel files produced by several missions. NAIF also 

distributes generic ephemeris data for planets, satellites, comets and 

asteroids. An ephemeris is a table of values that gives the positions 

of astronomical objects in the sky at a given time or for intervals of 

time.  

Ancillary data helps scientists and engineers to determine where the 

spacecraft is located, how its instruments are oriented, what is the 
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location, size, shape and orientation of the target, what events are 

occurring on the spacecraft (or on the ground) that might affect 

interpretation of observations and performances of the payloads as 

shown in figure 1.2. 

 

 
Figure 1.2: Ancillary Data Information. [11] 

 

Ancillary data are collected from the spacecraft, from the mission 

control centre, from spacecraft and instrument builders, and from the 

scientists. SPICE is used to organize and package all these data in 

file types –called “kernels”. 

 

 

2. SPICE System 
 

SPICE stands for “Spacecraft Planets Instrument C- Matrix Events”.  

The acronym is quite intuitive, except for “C” that stands for 

“camera”, referring to the camera installed on most of spacecrafts. 

The principal SPICE system components are two: 
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• data files, often called Kernels; 

• software, often known as Spice toolkit. 

 

Kernels 

SPICE kernels are composed of navigation and other ancillary 

informations that has been structured and formatted for easy access 

and correct use by the planetary science and engineering 

communities. So Kernels are files of “low level” ancillary 

informations that can be used, linked with other files and using the 

SPICE toolkit, to find out “high level” geometrical informations, as 

latitude, longitude, field of view and other similar data.  

In the following, SPICE acronym and kernel file contents are 

summarized: 

S- Spacecraft ephemeris, given as a function of time (SPK); 

P- Planet, satellite, comet, or asteroid ephemeredes, or more 

generally, location of any target body, given as a function of time 

(PCK); 

I- Instrument description kernel, containing descriptive data peculiar 

to a particular scientific instrument, such as field-of-view size, shape 

and orientation parameters (IK); 

C- Pointing kernel, containing a transformation, traditionally called 

the C-matrix, which provides time-tagged pointing (orientation) 

angles for a spacecraft structure upon which science instruments are 

mounted. May also include angular rate data (CK); 
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E- Events kernel, summarizing mission activities - both planned and 

unanticipated (EK).The Events kernel idea has not taken hold. After 

Cassini it may disappear. 

There are also other important components of the SPICE, even if not 

contained in the SPICE acronym: 

• “Frame kernel” contains specifications for the assortment of 

reference frames that are typically used by flight projects. This file 

also includes mounting alignment information for instruments, 

antennas and perhaps other structures of interest (FK); 

• “Spacecraft Clock Kernel” (SCLK),contains coefficients used for 

time conversion from Spacecraft Clock (SCLK) to Ephemeris Time 

(ET); 

• “Leap seconds kernel” (LSK) contains a second tabulation used for 

time conversion from Coordinated Universal Time (UTC) to 

Ephemeris Time (ET).  

SPICE kernels can be downloaded from 

ftp://naif.jpl.nasa.gov/pub/naif/generic_kernels. 

Common usage for SPICE kernel file name extensions is: 

t* text format (e.g. pck00008.tpc) 

b* binary format (e.g. de421.bsp) 

x* transfer format (e.g. de421.xsp) 

 

SPICE toolkit 

The SPICE system includes the SPICE Toolkit, a collection of 

software. The principal component of this toolkit is a library of 

subroutines needed to read the kernel files and to calculate 
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observation geometry parameters of interest. Users can integrate 

these SPICE toolkit subroutines into their own application such as 

ANSI FORTRAN 77, C, IDL and MATLAB. 

Generic SPICE Toolkits have an associated version number. As of 

this writing (February 2009) the available version is N0062, released 

on march 2008. The SPICE Toolkit can be downloaded from 

ftp://naif.jpl.nasa.gov/pub/naif/toolkit. In this transfer folder the 

toolkit is available for different platforms (PC, MAC,…) , operating 

systems (WINDOWS, LINUX, UNIX,…) and compilers.  

For the purpose of this study we analyse the SPICE Toolkit by 

means its interface MICE with the compiler MATLAB 7.5 (it has to 

be noted that NAIF built and tested MICE using MATLAB version 

7.4) on a PC platform for WINDOWS.  

NAIF distributes MICE as a complete, standalone package. The 

package includes: 

• the CSPICE source files; 

• the MICE interface source code; 

• platform specific build scripts for MICE and CSPICE; 

• an HTML based help system for both MICE and CSPICE; 

• the MICE MEX shared library and the M wrapper files.  

The system is ready for use after installation of the library. 

The toolkit directory (directory structure for different interface is 

almost identical) consists of:  

• data: cookbook example kernel (used only for training); 

• doc: text documents and HTML documentation. A toolkit User’s 

Guide, where everything about executable and SPICE software is 

explained. The extensions of these files can be *.ug (as User’s 
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Guide) and *.req (as “Required Reading” reference documents): they 

can be opened with a common text editor; 

• include: header files; 

• lib: toolkit libraries; 

• src: source code directories for executables and libraries; 

• exe: utility programs. They allow to make several operations on 

kernel files, such as taking out comments, converting a binary format 

in a “transfer” one (to transfer files on computers that use different 

binary files storage).  

These programs are: 

• brief.exe : command line program that displays a contents and time 

coverage summary for SPK or binary PCK files; 

• ckbrief.exe: command line program that summarizes the pointing 

coverage for CK files; 

• commnt.exe: command line program that reads, adds, extracts or 

deletes comments from SPICE binary kernel files; 

• chronos.exe: command line program that converts between several 

time systems and time formats; 

• inspect.exe: interactive program that examines the contents of an 

events component (ESQ) of an E-kernel; 

• mkspk.exe: program that creates an SPK file from a text file 

containing trajectory informations; 

• msopck.exe: command line program that converts attitude data 

provided in a text file as UTC, SCLK or ET-tagged quaternions, 

Euler angles or matrices, optionally accompanied by angular 

velocities; 
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• simple.exe: program that calculates the angular separation of two 

target bodies as seen from an observing body; 

• spacit.exe: program that converts kernel in transfer format to binary 

format, converts binary kernels to transfer format and summarizes 

the contents of binary kernels; 

• spkdiff.exe: program that computes differences between geometric 

states obtained from two SPK files and either displays these 

differences or shows statistics about them; 

• spkmerge.exe: program that subsets or merges SPK files into a 

single one; 

• states.exe: program that demonstrates the use of SPK files and 

subroutines by computing the state of a target body as seen from an 

observing body at a number of epochs within a given time interval; 

• subpt.exe: program that demonstrates the use of CSPICE in 

computing the apparent sub-observer point on a target body; 

• tictoc.exe: program that demonstrates the use of CSPICE time 

conversion utility routines string ET and ET UTC; 

• tobin.exe: command line program that converts transfer format SPK, 

CK and EK files to binary format; 

• toxfr.exe: command line program that converts binary format SPK, 

CK, EK files to transfer format; 
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3. Key concepts and definitions 

 
 In addition to the description of  SPICE library and its utility 

programs, it seems important also to clarify the definitions of 

fundamentals concepts, like time, reference frames and aberration 

corrections in order to avoid misunderstanding in the following. 

 

Time  

Time is  the fundamental dimension in almost every branch of 

science. The basis for scientific time is a continuous count of second 

based on two hundred atomic clocks in over fifty national 

laboratories, known as the International Atomic Time (TAI). Due to 

the averaging, it’s far more stable than any clock would be alone. 

The Atomic Time counts simply atomic seconds past the 

astronomically determined instant of midnight (00:00:00) of 1st 

January 1958 at Royal Observatory of Greenwich. The standard that 

gives a name to each second of TAI is known as Universal 

Coordinated Time (UTC). This standard is the basis of modern civil 

time. UTC dates are represented as strings, such as  

 
“26 JULY 1986 1:30:07.162 (UTC)” 

 
As shown in figure 1.3, the Universal Time (UT1) is a timescale 

based on Earth rotation by observing celestial bodies crossing the 

meridian every day. Astronomers have preferred observing meridian 

crossing of stars over observations of the Sun, because these are 

more accurate. 
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Figure 1.3: Definition of  UT1. [11] 

  

Ideally, UTC noon and astronomical noon at Greenwich (UT1) 

should occur simultaneously (fig. 1.4) since the Earth rotation is not 

uniform. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4: Difference between UTC and UT1 due to Earth rotation [11] 

 

When the difference between UTC and UT1 becomes greater than 

0.9 atomic seconds, a “leap second” is added (or removed). Leap 

UT1 
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seconds are normally added to the end of a designed UTC day, either 

June or December. 

The sequence will be: 

 

… DECEMBER 31 23:59:57 
… DECEMBER 31 23:59:58 
… DECEMBER 31 23:59:59 
… DECEMBER 31 23:59:60 
… JANUARY     1  00:00:00 

 

         Rather then 

 

… DECEMBER 31 23:59:57 
… DECEMBER 31 23:59:58 
… DECEMBER 31 23:59:59 
… JANUARY     1  00:00:00 

 

Leap seconds are very important in using SPICE. For a temporal 

conversion, routines always require a LSK, a text file containing the 

leap seconds updated list. 

A sample of an LSK is: 

 
\begindata 
 
DELTET/DELTA_T_A       =   32.184 
DELTET/K               =    1.657D-3 
DELTET/EB              =    1.671D-2 
DELTET/M               = (  6.239996D0   
1.99096871D-7 ) 
 
DELTET/DELTA_AT        = ( 10,   @1972-JAN-1 
11,   @1972-JUL-1 
12,   @1973-JAN-1 
13,   @1974-JAN-1 
14,   @1975-JAN-1 
15,   @1976-JAN-1 
16,   @1977-JAN-1 
17,   @1978-JAN-1 
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18,   @1979-JAN-1 
19,   @1980-JAN-1 
20,   @1981-JUL-1 
21,   @1982-JUL-1 
22,   @1983-JUL-1 
23,   @1985-JUL-1 
24,   @1988-JAN-1 
25,   @1990-JAN-1 
26,   @1991-JAN-1 
27,   @1992-JUL-1 
28,   @1993-JUL-1 
29,   @1994-JUL-1 
30,   @1996-JAN-1 
31,   @1997-JUL-1 
32,   @1999-JAN-1 
33,   @2006-JAN-1 
34,   @2009-JAN-1 ) 
 
\begintext 

 

Ephemeris time (ET) is an uniform timescale used in ephemerides 

of celestial bodies. Two kinds of ephemeris time exist: Barycentric 

Dynamical Time (TDB) and Terrestrial Dynamical Time (TDT).  ET 

and TDB are used synonymously in SPICE documentation. The 

TDB standard is used to describe the motion of celestial bodies 

relative to Solar System barycentre, while the TDT standard is used 

to describe the motion of bodies next to the Earth. These standard are 

linked by the relation : 

 
TDB = TDT + 0.001657 sin( E + 0.01671sin(E) ) 

 
TDB is also linked with TAI by a constant values, in other words 

their difference is always 32.184 seconds: 

 
TDB – TAI = 32.184 s 
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ET (or TDB) counts seconds past the reference epoch indicated with 

J2000 (approximately 1 January 2000, 12:00:00 at Greenwich).  

For example, the precedent string 

 
26 JULY 1986 1:30:07.162 (UTC) 

 
correspond to 

 
-424002537.65 seconds past the ephemeris epoch J2000 

 
Most of spacecrafts has onboard clocks (Spacecraft Clock, SCL) to 

control time coverage of instruments. These clocks don’t have linear 

time progress, so relations between SCLK, ET and UTC can’t be 

described by linear functions. 

Mission lifetimes are divided in several partitions where the clock 

works continuously.  So time strings in spacecraft clocks are always 

preceded by the partition number, such as 

 
1/4132564.034 

 
where “1” is the partition number and the left numbers indicate the 

seconds of that partition. 

Sometimes, in SPICE documentation the concept of Julian Date 

occurs to determine easily the number of days between two different 

epochs. This standard counts days and day fractions (in Julian 

Proleptic Calendar) past the noon (Greenwich time) of 1st January 

4713 b.C. 

 

Reference Frames 

SPICE routines often ask users to choose in which reference frame 

the outputs have to be given. This choice is very important for the 
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interpretations and later usage of outputs. SPICE supports several 

types of reference frames, such as: 

• inertial reference frame 

• body – fixed reference frame 

• instrument – fixed reference frame 

 

Inertial reference frames neither rotate or accelerate respect to 

fixed star. In these frames Newton’s Laws are valid and they can be 

applied. SPICE usually uses J2000 coordinate system, where the Z-

axis is aligned with Earth rotating axis, pointing in the direction of 

the north pole, the X-axis points in the vernal equinox direction (at 

J2000 epoch) and the Y-axis is defined so as to form a right-handed 

set of coordinate axis (as shown in figure 1.5).  

   

 
Figure 1.5: Inertial reference frame. [11] 
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Body – fixed reference frames are tied with the surface of a body,  

centred at its centre and rotate respect to inertial frames. In SPICE 

documentation these coordinate systems are indentified with “IAU” 

prefix, since their orientation is determined by International 

Astronomical Union models. Dealing with Earth, the body - fixed 

reference frame is the Earth Centered Earth Fixed (ECEF), 

commonly defined in SPICE system  as “IAU_EARTH”. This is a 

rotating frame centered in the mass center of the Earth, hence the 

name Earth-Centered. The z-axis is parallel to the Earth rotational 

axis pointing towards North. The x-axis intersect the sphere of the 

Earth at the 0° latitude, 0° longitude. This means that the ECEF 

rotates with the Earth around its z-axis. Therefore, coordinates of a 

point fixed on the surface don’t change, hence the name Earth-Fixed. 

The y-axis completes the right-handed frame (figure 1.6). 

  

 
Figure 1.6: Earth Centered Earth Fixed Reference Frame. [11] 



Chapter I 

 
 

20

 

Instrument – fixed frames are tied with a specified instrument and 

are defined by the time – varying orientation of the instrument (or 

spacecraft). 

  

Aberration Corrections 

To determine accurately in which direction a remote sensing 

instrument must be pointed, or in which direction an antenna must be 

pointed to transmit a signal to a specified target, aberration 

corrections are needed. Within SPICE system, aberration corrections 

are adjustments made to accurately reflect the apparent state of a 

target body as seen from a specified observer at a specified time. 

Infact, in a pointing problem, for example, the instrument must point 

the apparent position of the target and not the real one at observation 

time. The real state is called “geometric” state. SPICE supports two 

aberration corrections: light time (called also planetary aberration) 

and stellar aberration.  

Light time is the one-way light time between the position of target 

and the observer. Light time aberration correction is made 

determining where the target is when photons have been emitted. 

Light time correction only depends on motion between target and 

Solar System Barycentre (SSB), and it doesn’t depend on velocity 

between observer relative to SSB. Figure 1.7 shown clearly light 

time aberration phenomenon. 
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Figure 1.7: Light Time Aberration phenomenon [11]. At time ET, the observer’s camera records photons 

emitted from the target at time ET-LT. The camera sees the target's position and orientation at ET-LT.  

 

Also observer velocity affects apparent target position: photons 

velocity relative to the observer is the difference between their 

velocity and observer velocity, always respect to SSB. This 

phenomenon is named stellar aberration and it doesn’t depend on 

target velocity. Figure 1.8 shown clearly stellar aberration . 

 

 
Figure 1.8: Stellar Aberration phenomenon [11]. At time ET, the observer’s camera records photons 

emitted from the target at time ET-LT. The vector from the observer at ET to the location of the target at 

ET-LT is displaced by a physical phenomenon called stellar aberration. The displaced vector yields the 

apparent position of the target. 

 

According to application and usage, CSPICE routines allows to 

correct these aberrations.  
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Some applicative tags are: 

1. NONE: routines return the geometrical target state, in other words 

without corrections; 

2. LT: light time corrections applied; 

3. LT+S: light time and stellar aberration corrections are both applied.  

 

 

4. Introduction to MICE  

 
MICE operates as an extension to the MATLAB environment. This 

environment includes an intrinsic capability to use external routines. 

MICE uses the MATLAB external interface functionality (MEX) to 

provide MATLAB users access to selected CSPICE routines from 

within MATLAB. A user need only install the interface library in 

order to take advantage of SPICE utilities. The MICE library 

contains the MATLAB callable C interface routines that wrap a 

subset of CSPICE wrapper calls. The wrapper files, named 

“cspice_*.m” and “mice_*.m”, provide the MATLAB calls to the 

interface functions. The wrappers include a header section describing 

the function call, inputs-outputs (I/O) and examples, displayable by 

the MATLAB help command. These routines are black boxes, the 

algorithm existing behind routines is not visible and they are for 

NAIF staff use only. To make kernels available to SPACE programs, 

user has to load them. User can use the FURNSH routine to load all 

kernels-text and binary with the command: 

 
>>cspice_furnsh (‘name.ext’) 
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It has to be noted that problems might raise if more than one kernel 

is loaded by the user. 

Kernels are loaded into MATLAB session not into MATLAB 

scripts. This means that loaded kernels remain “active” throughout 

the whole MATLAB session. If there is only one script in the 

MATLAB session, there is no problem. On the other hand, some 

kernel data may be available and used to a script even though not 

intended to be so, driving to incorrect results. To bypass this problem 

there are two approaches: 

1. include a call to cspice_unload for each kernel loaded using 

cspice_furnsh or include a call to cspice_kclear to remove all kernel 

data from the kernel pool loaded using cspice_furnsh; 

2. load all needed kernels at the beginning of the session, paying 

careful attention to the files loaded and loading order. So user can 

create a filenames-list called “meta-kernel” and load the meta-kernel 

using FURNSH. 

 
>>cspice_furnsh (‘mykernels.furnsh’) 
 
This is a sample meta-kernel used to load a collection of kernels: 

 
        KPL/MK 
        \begindata 

PATH_VALUES = (‘/corista/mice/kernels’) 
PATH_SYMBOLS = (‘KERNELS’) 
KERNELS_TO_LOAD= ( 
  ‘$KERNELS/leapsecond.tls’, 
  ‘$KERNELS/sclk.tsc’, 
  ‘SKERNELS/de421.bsp’) 

 

The number of kernels that may be loaded at any time is large but 

limited (max 1000 for binary kernels and 1300 for all kernels). In the 
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following a detailed description of an applicative example is 

provided. 

Use of MICE requires both the “lib” and the mice “src” directories 

existing in the MATLAB search path: 

 
>>addpath (‘C: \corista\mice\lib\’) 
>>addpath (‘C: \corista\mice\src\mice’) 
 
To ensure a proper setup, execute the command 

 
>>which mice 
 
MATLAB should return the path to the mice.dll file. Writing 

 
>>cspice_tkvrsn(‘toolkit’) 
 
the command causes MATLAB to display the CSPICE library 

version (N0062). 

MATLAB views all calls to MEX library as functions, that is a call 

as the form 

 
 output = name( inputs ) 
 

While for multiple arguments on output: 

 
 [output1, output2,…] = name ( inputs ) 
 
This is a sample model to convert between several time system and 

time formats, built step by step. Through the cspice index, we learn 

the two routines of interest are cspice_ str2et and  cspice_ et2utc. 

cspice_ str2et converts a string representing an epoch to a double 

precision value representing the number of TDB seconds  past the 

J2000 epoch corresponding to the input epoch. 
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  GIVEN    I/O   DESCRIPTION 
---------  ---  ---------------------------------- 
   str      I    time string 

                     et      O    double precision number of TDB                
                      seconds past the J2000 epoch that     
                      corresponds to the input 'str'    

 

cspice_et2utc converts an input time from ephemeris seconds past 

J2000 to Calendar, Day-of-Year, or Julian Date format, UTC. 

 

  GIVEN    I/O   DESCRIPTION 
---------  ---  ---------------------------------- 
   et       I    double precision array of    
                 ephemeris time  
  format    I    format flag describing the output   
                 time string 
  prec      I    number of decimal of precision 
  utcs      O    output string 
 

Format flag are: 

 
 'C'      Calendar format, UTC 
 ‘D'      Day-of-Year format, UTC 
 'J'      Julian Date format, UTC 
 'ISOC'   ISO Calendar format, UTC 
 'ISOD'   ISO Day-of-Year format, UTC 
 

Building the program as an *.m file: 
 
%*********************************************************** 
%****** This program converts UTC time format in:     ****** 
%****** - Et format                                   ******        
%****** - Calendar format, UTC                        ******    
%****** - Day-of-Year format, UTC                     ******            
%****** - Julian Date format, UTC                     ****** 
%*********************************************************** 
%load leapseconds file 
cspice_furnsh ('C:\Corista\mice\lib\naif0009.tls'); 
%input 
time = input( 'Enter time string => ','s'); 
%conversion UTC==>ET 
et = cspice_str2et( time ); 
%conversion ET==>UTC "C" 
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UTCC = cspice_et2utc( et, 'C', 6 ); 
%conversion ET==>UTC "D" 
UTCD = cspice_et2utc( et , 'D', 6 ); 
%conversion ET==>UTC "J" 
UTCJ = cspice_et2utc( et , 'J', 6 ); 
%output 
fprintf( 'ET==> %11.6f\n',et ); 
fprintf( 'Calendar format ==> %s\n', UTCC ); 
fprintf( 'Day-Of-Year format ==> %s\n', UTCD ); 
fprintf( 'Julian Date format==> %s\n', UTCJ ); 
 

 

5. SPICE Ephemeris Subsystem SPK  
 

An SPK file contains ephemeris data for "ephemeris objects”. 

Spacecrafts, planets, satellites, comets and asteroids are the obvious 

kinds of ephemeris objects, but many other possibilities exist, such 

as: 

• a rover on the surface of a body 

• a camera on top of a mast on a lander 

• a transmitter cone on a spacecraft 

• a deep space communications antenna on the earth 

• the center of mass of a planet/satellite system (planet barycenter) 

• the center of mass of our solar system (solar system barycenter) 

All possibilities are summarised in the following picture (fig. 1.9)  
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Figure 1.9: Example of ephemeris objects. [11] 

 

Inside an SPK file ephemeris objects come in pairs: a “body” and a 

“center of motion” so that the ephemeris is given for the body 

moving relative to the center of motion. 

For the position component, the vector points TO the body FROM 

the center of motion. In the case of multiple pairs, reading an SPK 

file, user has to specify which ephemeris object is the “target” and 

which is the “observer”. Other used conventions are: 

• the position data point from the “observer” to the “target”; 

• the velocity is of the “target” relative to the “observer”.(Fig.1.10) 

 

 
Figure1.10: Example of  conventions. [11] 
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An important parameter concerning with time is the “coverage” or 

“time coverage”. Coverage is the time period over which an SPK file 

provides data for an ephemeris object. 

Since SPK kernels are binary files, reading informations and data 

inside is not easy, so that it’s impossible to open such files with a 

traditional text editor. NAIF provides making available several 

utility program (including in the toolkit) to bypass this problem. The 

program BRIEF, for example, allows users to read general 

informations and time coverage of SPK kernels. But BRIEF is not 

the only one. Launching SPACIT and choosing the option “S” 

(summarize binary file), the program displays the “descriptor” of an 

SPK kernel.   

Concerning with binary files, porting kernels may cause several 

problems. Data formats vary across platforms, so data files created 

on a platform may not be useful on another platform (called 

“incompatible” platforms): different platforms use different bit 

patterns to represent numbers (and possibly characters). This 

problem not only affects binary data formats but also text formats: 

different platforms may use different mechanisms to represent 

“lines” in text files. Platforms have “compatible” binary or text 

formats if they use the same binary or text data representations. 

NAIF with toolkit utility programs solves the porting problem. 

SPACE toxfr.exe and spacit.exe  may be used to convert binary data 

format kernels in a “transfer format”. Later on, after porting, 

spacit.exe and tobin.exe allow to reconvert the transfer format file in 

a binary data format file, available and ready-to-use on the new 

platform. 
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SPK kernels can be downloaded from: 

ftp://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk . 

There are four sub directories concerning with comets, planets, 

satellites, and asteroids. Our attention is focused on the SPK planets 

kernel: “de421.bsp”, realised on 31st March 2008. 

To extract position or state vectors of ephemeris objects from an 

SPK file, usually two kinds of SPICE kernels are needed: 

• SPK, ephemeris kernels, sometimes just one is needed; 

• LSK, leapseconds kernel, used to convert between Coordinated 

Universal Time (UTC) and Ephemeris Time (ET); usually needed 

since most people work with UTC time. 

To retrieve state vectors of an ephemeris object, cspice_spkezr may 

be used. This routine returns the state (position and velocity) of a 

target body relative to an observing body, optionally corrected for 

light time (planetary aberration) and stellar aberration. The call is: 

 
[state, lt] = cspice_spkezr (targ, et, ref, abcorr, obs) 
 
Inputs: 

• targ, obs: characters names or NAIF IDs for the target body and the 

observer one, in other  words the point and the origin of the state 

vector (Cartesian position and velocity) to be returned; 

• et: the time at the observer at which the state vector is to be 

computed in Ephemeris Time; 

• ref: the scalar name of the reference frame relative to which the 

output state vector should be expressed; 

• abcorr: kind of aberration correction(s) to be applied. 

Outputs: 
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• state: Cartesian state vector with six components: three for position 

and three for velocity of the target respect to the observer; 

• lt: the one-way light time between the position of target (optionally 

aberration corrected) and the geometric position of the observer at 

the specific epoch. 

Building the program as an *.m file: 

 
%*********************************************************** 
%****** This program retrieves state vectors    ****** 
%****** (position and velocity) of a target body      ****** 
%****** relative to an observing body optionally      ****** 
%****** corrected for light time at a specific epoch  ******   
%*********************************************************** 
%initial conditions 
cspice_kclear 
%load leapseconds file and SPK kernel 
cspice_furnsh( 'C:\Corista\mice\lib\naif0009.tls'); 
cspice_furnsh( 'C:\Corista\mice\lib\de421.bsp'); 
%input 
time= input ('Enter the time string => ','s'); 
targ= input ('Enter the target body => ','s'); 
obs= input ('Enter the observer body => ','s'); 
frame= input ('Enter the reference frame => ','s'); 
abcorr= input ('Enter the aberration corrections => ','s'); 
%time conversion between string => ET 
et = cspice_str2et( time ); 
%compute state vectors 
[pos,ltime ]=cspice_spkezr( targ, et, frame, abcorr, obs ); 
%outputs 
fprintf( 'Position (km) x : %11.6f\n', pos(1) ); 
fprintf( 'Position (km) y : %11.6f\n', pos(2) ); 
fprintf( 'Position (km) z : %11.6f\n', pos(3) ); 
fprintf( 'Velocity x (km/s) : %11.6f\n', pos(4)  ); 
fprintf( 'Velocity y (km/s) : %11.6f\n', pos(5)  ); 
fprintf( 'Velocity z (km/s) : %11.6f\n', pos(6)  ); 
fprintf( 'ET : %11.6f\n', et ) 
fprintf( 'Light Time : %11.6f\n', ltime ) 
 

 

The planetary and lunar ephemeris DE 421 represents the “current 

best estimates” of the orbits of the Moon and planets. The lunar orbit 

is currently known to sub-meter accuracy though fitting lunar laser 

ranging data. The orbits of Venus, Earth, and Mars are known to 
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sub-kilometer accuracy. Because of perturbation of the orbit of Mars 

by asteroids, frequent updates are needed to maintain the current 

accuracy into the future decade. The orbits of Earth and Mars are 

continually improved through measurements of spacecraft in orbit 

about Mars. Mercury’s orbit is determined to an accuracy of several 

kilometers by radar ranging. The orbits of Jupiter and Saturn are 

determined to accuracies of tens of kilometers as a result of 

spacecraft tracking and modern ground-based astrometry. The orbits 

of Uranus, Neptune, and Pluto are not as well determined. 

The axes of ephemeris are oriented with respect to International 

Celestial Reference Frame (ICFR).  For DE 421 the positions of the 

Moon and planets were integrated using a n-body parameterized 

post-Newtonian metric (PPN). The PPN parameters γ and β have 

been set to 1, their values in general relativity.  The oblateness of the 

Sun has been modelled with J2 set to 2.0x10-7. Along with the Earth-

Moon mass ratio, the mass parameter GM for the Sun, which is by 

convention a fixed value in units of AU3/day2, was estimated in units 

of km3/s2 by solving for the AU in km in the development of DE 

421. The mass parameter of the Earth-Moon system was held fixed 

to a previous LLR-only estimate. The mass parameters for the other 

planets (planetary systems for planets with natural satellites) were 

taken from published values derived from spacecraft tracking data. 

For the Earth's gravity field, J3 and J4 were taken from the GGM02C 

gravity field and the equatorial Earth radius used with gravity was 

set to 6378.1363 km. The J2 coefficient was based on the GGM02C 

"tide free" value, but the J2 value was adjusted with different Love 

numbers. Love numbers, introduced by A.E.H. Love, determine the 

ratio of the height of a body tide to the static marine tide and the 
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ratio of additional potential produced by the redistribution of mass to 

the displacement of the crust to that of the equilibrium fluid tide. 

It’s proper to spend few words about GGM02. GGM02S gravity 

model was estimated with 363 days (spanning form April 2002 to 

March 2003) of GRACE K-band range rate, attitude and 

accelerometric data. No satellite information, or surface gravity 

information, or other a priori conditioning were applied in generating 

this solution. GGM02C, a high resolution global gravity model, 

combines GGM02S with terrestrial gravity information (surface 

gravity and mean sea surface). The Earth tides came from the IERS 

conventions and the ocean tides were based on FES2004 (Finite 

Element Solution tidal atlates).  
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 CHAPTER II: Kernels generation 
 

 

From NAIF server are available kernels for several missions. SPICE 

is used essentially for all NASA solar system exploration projects. 

SPICE kernels archived by NAIF node deals both with passed 

(VOYAGER, PHOBOS,…), current (CASSINI, MESSENGER,…) 

and future missions (MSL, JUNO, …). Limited SPICE kernels may 

be created (or are being) for some past missions: for example for 

some missions only SPK is available. SPICE is also used in support 

of some space physics and astrophysics missions (HST,…), on some 

non-NASA missions (HAYABUSA, ROSETTA,…).   

Missions (and relative kernels) archived and available on NAIF 

server are listed in Annex I. 

NAIF also provides tools to generate your own kernels taking high 

advantage from SPICE routine. According to their requirements, 

users can create the kernels they need for their computations and 

analysis. Even thought users can create kernels for their needs, 

NAIF’s tools don’t allow to create each type of kernels: some tools 

have limitations and some data indicating how to create a complete 

set of kernels are not available.  

This work is focused on creating kernels in the scenario of  Post-EPS 

mission, in particular retrieving Sun and Moon view angle with 

respect to the spacecraft and the coverage analysis.    

 

 

 



Chapter II 

 
 

34

1. Post–EPS mission 
 

EUMETSAT Polar System (EPS) mission is the first European 

polar orbiting operational meteorological satellite system and it’s 

part of the Global Operational Satellite Observation System (GOS), 

as shown in fig. 2.1.  

  

 
Figure 2.1: EPS contributes to the GOS.  [5] 

 

EPS is the European contribution to a joint satellite system between 

Europe and United States, called Initial Joint Polar-Orbiting 

Operational Satellite System (IJPS). This is an agreement between 

the European Organisation for the Exploration of Meteorological 

Satellites (EUMETSAT) and the National Oceanic an Atmospheric 

Administration (NOAA). The EPS programme consists of a series of 

three Meteorological Operational (MetOp) satellites, operative for 

more than 14 years from 2006. MetOp-2, the first satellite, was 
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launched on 19 October 2006 from the Baikonur cosmodrome in 

Kazakhstan with a Soyuz launcher. Once in orbit the satellites are 

ordered alphabetically, so the first satellite that was launched is 

called MetOp-A. Each satellite has a nominal lifetime in orbit of 5 

years. This programme has brought a new era in the observations of 

Earth’s weather, climate and environment, and it will significantly 

improve operational meteorology, in particular Numerical Weather 

Prediction (NWP). The data carried by MeteOp can be assimilated 

directly into NWP models to compute forecasts ranging from a few 

hours up to ten days ahead. Measurements from microwave 

radiometers on board Metop provide NWP models  that retrieve very 

important informations about global atmospheric temperature an 

humidity structure, with a high vertical and horizontal resolution.     

Post- EPS mission is a mandatory programme which is the 

extension of EPS observation missions, focusing in particular on 

NWP and climate monitoring starting in 2018 for at least 15 years 

(figure 2.2). 

  

 
Figure 2.2: Post-EPS mission plan. [13] 

 

Post-EPS orbits are Sun-Synchronous Orbit (SSO) with the orbit 

geometry shown in figure 2.3: 
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• Altitude, defined as (Mean Semi-Major Axis – Earth equatorial 

radius): km 720; 

• SSO at 9:30 LTDN; 

• Angle between Earth-Sun direction (at equinox) and lines of 

node:37.5° 

• Angle Earth-Sun direction-orbit plane: 38.7° (max), 27.7° (min), 

32.8° (mean). 

   

 
Figure 2.3: Post-EPS orbit geometry. [13] 

 

Sun-synchronous orbits are geocentric orbits where a satellite passes 

over any given point of the Earth's surface at the same local time. 

The surface illumination angle will be nearly the same every time. 

This means that line of nodes and Sun projection onto the equatorial 

plane have the same precession rates, i.e. angle between the Earth-

Sun direction equatorial projection and the line of nodes is constant. 

For SSO, combining altitude, inclination and eccentricity the 

following equations can be written: 
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Where: 

 

• Ω&  is the line of nodes precession rates; 

• α&  is the sun precession rates; 

• J2 is the is the second zonal harmonic coefficient (Earth oblateness); 

• R is the Earth equatorial radius; 

• a is the semi-major orbit axis; 

• e is the eccentricity; 

• i is the orbital inclination; 

•  μ is the gravitational parameter. 

 

 

2. Making kernels 
 

In order to compute illumination angles of the Post-EPS satellite and 

analyze the coverage, the user needs an SPK containing the 

spacecraft ephemeris to retrieve time by time the state vector.  Then, 

with respect to a fixed spacecraft reference system, the illumination 

angles and the coverage can be easily computed. 

The user must provide the SPICE system the required kernels to 

make the analysis and gain from SPICE routines. The figure 2.4 

shows a logical overview of the analysis developed in this chapter. 
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Figure 2.4: Logical summary of kernels generation. SPICE routines requires several kernels: SPICE 
kernels (in green) provided by SPICE itself, text kernels and setup file (in blue) , and satellite’s 
ephemeredes (in black) created in order to conduce the analysis. 

   

Four main steps are needed: 

• create the SPK; 

• create a FK; 

• create an IK; 

• finally write the MICE program. 

In the following these four step will be described in detail. 

 

Making an SPK file 

Before creating an SPK, it is useful to understand and to know the 

structure of an SPK file. An SPK file is made up of one or more data 

“segments” and a “comment” area (figure 2.5).  
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Fig. 2.5: Logical Organization of an SPK file. [11]  

 

Each segment contains ephemeris data sufficient to compute the 

geometric state (position and velocity) of one solar system body (the 

target) with respect to another (the center) at any epoch throughout 

some finite interval of time. The space body may be a spacecraft, a 

planet or planet barycenter, a satellite, a comet, an asteroid, a 

tracking station, a roving vehicle, as well as an arbitrary point for 

which an ephemeris has been calculated. Each body in the solar 

system is identified by a unique integer code. The states computed 

from the ephemeris data in a segment must be referenced to a single, 

recognized reference frame. 

The summary for each segment (figure 2.4), called “descriptor”, 

retrieves: 

• the segment’s name; 

• the NAIF integer code for the target; 

• the NAIF integer code for the center; 
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• the NAIF integer code for the reference frame; 

• the integer code for the representation (type of ephemeris data); 

• time coverage; 

The fifth integer component of the descriptor - the code for the 

representation, or “data type” - is the key to the SPK format: it 

describes how ephemeris data are represented inside the SPK file. 

Each type has certain properties that may promote or limit its 

usefulness in a particular application. SPICE currently support 18 

data types: 

1. Modified Difference Arrays (MDA). 

These are primarily used for spacecraft ephemeredes. Each segment 

containing Modified Difference Arrays contains an arbitrary    

number of logical records. Each record contains difference line    

coefficients valid up to a final epoch. A given function contains the 

algorithm used to construct a state from a particular record and 

epoch. Each one of these records contains 71 double precision 

numbers. 

1. Chebyshev polynomials (position only). 

These are sets of coefficients for the x, y, and z components             

of the body position. The velocity of the body is obtained by             

differentiation. This data type is normally used for planet             

barycenters, and for satellites whose orbits are integrated. 

2. Chebyshev polynomials (position and velocity). 

 These are sets of coefficients for the x, y, and z components             

of the body position, and for the corresponding components of             

the velocity. This data type is normally used for satellites             

whose orbits are computed directly from theories. 

3. Reserved for future use. 
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4. Discrete states (two body propagation). 

This data type contains discrete state vectors. A state is          

obtained for a specified epoch by propagating the state vectors             

to that epoch according to the laws of two body motion and then             

taking a weighted average of the resulting states.  

5. Reserved for future use. 

6. Reserved for future use. 

7. Equally spaced discrete states (Lagrange interpolation). 

This data type contains discrete state vectors whose time tags             

are separated by a constant step size. A state is obtained for a 

specified epoch by finding a set of states “centered” at that             

epoch and using Lagrange interpolation on each component of the             

states. 

8. Unequally spaced discrete states (Lagrange interpolation). 

This data type contains discrete state vectors whose time tags may be 

unequally spaced. A state is obtained for a specified epoch by 

finding a set of states “centered” at that epoch and using Lagrange 

interpolation on each component of the states. 

9. Space Command Two-line Elements (Short Period Orbits). 

This data type contains Space Command two-line element 

representations for objects in Earth orbit. 

10. Reserved for future use. 

11. Hermite Interpolation Uniform Spacing. 

12. Hermite Interpolation Non-uniform Spacing. 

13. Chebyshev polynomials non-uniform spacing. 

This data type contains Chebyshev polynomial coefficients for             

the position and velocity of an object. Unlike SPK Types 2 and             
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3, the time intervals to which polynomial coefficient sets             

apply do not have uniform duration. 

14. Precessing conic propagation. 

This data type allows for first order precession of the line of             

apsides and regression of the line of nodes due to the effects             

of the J2 coefficient in the harmonic expansion of the             

gravitational potential of an oblate spheroid. 

15. Reserved for future use. 

16. Equinoctial Elements. 

This data type represents the motion of an object about another             

using equinoctial elements. Unlike Type 15, the mean motion, 

regression of the nodes and precession of the line of apsides are not 

derived from the gravitational properties of the central body, but are 

empirical values. 

17. Hermite/Lagrange Interpolation. 

 

After the description of the structure of an SPK, it’s now possible to 

analyze the method available for making an SPK file.  

NAIF provides a conversion utility (MKSPK.exe) that takes a data 

file produced by an orbital propagator as input and gives the binary 

files (figure 2.6). 

  

 
Fig. 2.6: Logical diagram for making SPK. [11]  
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As shown in figure 2.5, a setup file and an ASCII file of ephemeris 

data are required (a comment file is optional). MKSPK doesn’t allow 

to create SPK files in whatever data type. The needed ephemeris data 

representation are: 

• table of Cartesian state vectors; 

• one or more sets of Space Command two-line;  

• table of conic elements; 

• one or more sets of equinoctial elements. 

The possible SPK data type produced are 5, 8, 9, 10, 12, 13, 15, 17 

(see list above). 

The setup file (figure 2.5) provides the conversion utility to read and 

storage the ephemeris data file, describing the observer, the target, 

the reference frame, the type of input and output data, how 

ephemeredes are placed in the data file. The format of this file must 

be conform to the SPICE text kernel specification. This means that 

the input values must be assigned to keyword variables through the 

format: 

 
KEYWORD = VALUE 

 
The names of keywords must be strictly uppercase while the value of 

keywords don’t matter if it’s upper, lower or mixed case. Each 

assignment is restricted to a single line and sets of this assignment 

must be enclosed between  

 
\begindata 
\begintext 

 
Comments can be written before \begindata and after 
\begintext. 
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The assignments required for the setup file are listed in Annex II. 

Compiled the setup file, an ephemeris data file is needed. The 

ephemeris data are produced by an orbital propagator (not provided 

by NAIF). The orbital propagator used in this thesis is a trajectory 

propagator, which takes advantage of the power of NAIF library and 

the fast and the high level computation of SPICE routines. The 

algorithm used take into account the Earth oblateness (J2 term)  in 

scenario of  Post-EPS mission which satellites lies on LEO orbits. 

The propagator considers that the true anomaly at the initial 

propagation time is zero and gives to the user the possibility to set. 

Fixed, the set of orbital parameters, the user can choose the initial 

date of propagation, the days of propagation and the time step (figure 

2.7).  
 

 
Figure 2.7: Orbital propagator user interface. 
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The software, using SPICE routines, converts the time string in 

Ephemeris Time, and computes the orbit inclination for a Sun-

Synchronous Orbit using the formula considered above. Beside this 

other outputs of the orbital propagator are: the mean anomaly, M, 

and the eccentric anomaly, E, solving the transcendent Kepler 

equation using the Newton-Raphson iteration method.  

The equation that links mean and eccentric anomaly is: 

 
EeETtnM sin)( −=−=  

 
where n is defined as 3an μ=  called “mean motion”. The 

relationship between eccentric anomaly and true anomaly ν and 

radius r  is: 
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Retrieved radius and true anomaly, the components of position and 

velocity of the satellite for the considered time frame are computed 

in ECI reference. Considering Earth rotation and the related 

transformation matrix, the algorithm converts state components from 

ECI to ECEF reference. The compiled program file (*.m file) of the 

orbital propagator is reported in Annex III.  

Ephemeredes in double precision are printed in a text file. The 

orbital propagator creates a time ordered sets of states, where each 
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ephemeris epoch lies one on a single line and components are 

separated by TAB: the first value is the epoch in Ephemeris seconds, 

followed by three position components and three velocity 

components. A sample of the ephemeris data file is the following: 

 
 ephemeris [et,state].Tar: -313 Obs: EARTH 
287712066.19 7098.14   0.00    0.00  0.00 -1.08 7.42 
287712076.19 7097.73 -15.95   74.16 -0.08 -1.08 7.42 
287712086.19 7096.52 -31.91  148.30 -0.16 -1.08 7.41 

 
For a more comfortable visualization according to this page format, 

the TAB has been replaced with SPACE and the values has been cut 

at the second decimal number.  

Created the ASCII ephemeris data file, the user can compile the 

setup file to provide the MKSPK conversion program to read in the 

right way the ephemeredes and give the binary SPK files. Assumed 

that the considered satellite ID is “-313” (a fictitious number chosen 

by user), the setup file will be:   

 
 

\begindata 
INPUT_DATA_FILE   = 'ephemerisdata.txt' 
OUTPUT_SPK_FILE   = 'eph.bsp' 
INPUT_DATA_TYPE   = 'STATES' 
OUTPUT_SPK_TYPE   = 5 
OBJECT_ID         = -313 
CENTER_NAME       = 'EARTH' 
REF_FRAME_NAME    = 'IAU_EARTH' 
PRODUCER_ID       = 'SALVATORE TUOSTO' 
DATA_ORDER        = 'EPOCH X Y Z VX VY VZ' 
INPUT_DATA_UNITS  = ('ANGLES=DEGREES'  

 'DISTANCES=km') 
DATA_DELIMITER    = 'TAB' 
LINES_PER_RECORD  = 1 
IGNORE_FIRST_LINE = 2 
LEAPSECONDS_FILE  = 'naif0009.tls' 
PCK_FILE          = 'Gravity.tpc' 
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TIME_WRAPPER      = '# ETSECONDS'       
SEGMENT_ID        = 'PROVA_SPK_MIO_SAT' 
APPEND_TO_OUTPUT  = 'YES' 
\begintext 
    

The required files are now available and ready to be given in input to 

MKSPK conversion program.  

With the created SPK file, user can retrieve position and velocity of 

the satellite at any epoch enclosing in time coverage using SPICE 

routines analyzed in the past chapter (Ch. 1.4). The satellite’s SPK 

must be loaded as a generic SPK file with the FURNSH routine.   

  

Making an FK (Frame Kernel) file 

For pointing problem, or simply to compute positions of several 

celestial bodies with respect to a spacecraft, a rover, an orbiter, a 

specified instrument, defining a body reference frame is a crucial 

problem. A number of reference frames are already defined in 

SPICE system, but sometimes a specific problem can require the 

creation of a new reference frame. In order to define a new reference 

frame, its orientation and position with respect an existing reference 

frame have to be computed: SPICE allows also to compute 

transformation between neighboring reference frame. 

To create a Frame Kernel (FK file), the concept of a frame class is 

needed. The method by which a frame is related to some other frame 

is a function  of the “class” of the frame. There are five classes: 

1. Inertial frame. 

These frames don’t rotate with respect to the star background. Here, 

Newton’s laws can be applied. The class number associated with 

inertial frame is 1. 
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2. Body-Fixed (PCK) frames. 

The orientation of these frames with respect to inertial frames is 

supplied in PCK files. The class number associated with PCK frames 

is 2. 

3. CK frames. 

The orientation of these frames with respect to some other reference 

frame is supplied via a C-kernel. A CK file holds orientation data or 

a moving structure on the spacecraft. C-kernels use spacecraft clock, 

so user must load a SCLK file appropriate for the C-kernel. The class 

number associated with CK frames is 3. 

4. Fixed offset frames. 

These frames have a constant orientation with respect to some 

reference frame an this orientation is included in a SPICE text 

kernel. That’s why this class of frame is also called Text Kernel 

(TK). The class number associated with TK frames is 4. 

5. Dynamic frames.  

These frames time-dependent, and they are defined via parameters or 

formulas specified in a text frame kernel. The class number 

associated with dynamic frames is 5. 

 Dynamic frames are time dependent so they are ideal to describe 

orbital frames of any ephemeris object, also because the frames of 

the fifth class are easy to define and enables SPICE system to use 

conveniently a wide variety of frame that are not “built-in” to 

SPICE. The only currently frame definition style supported by 

dynamic frames subsystem is the parameterized one. A 

“parameterized dynamic frame” is defined by a formula 

implemented in SPICE code and having selectable parameters set via 

a frame kernel. The parameterized dynamic frame “family” indicates 
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the mathematical formula the frame is defined by. There are five 

parameterized dynamic frame families: 

• Two-vector frames: these reference frames are defined by two 

vectors. The first vector is parallel to one axis of the frame; the 

component of the second vector orthogonal to the first is parallel to 

another axis of the frame, and the cross product of the two vectors is 

parallel to the remaining axis. 

• Mean equator and equinox of date frames: these use mathematical 

precession models to define orientation of a body's equatorial plane 

and location of the frame's x-axis. Currently these frames are 

supported only for the earth. 

• True equator and equinox of date frames: these use mathematical 

 precession and nutation models to define orientation of a body's 

equatorial plane and location of the frame's x-axis. Currently these 

frames are supported only for the earth. 

• Mean ecliptic and equinox of date frames: these use mathematical 

precession and mean obliquity models to define orientation of a 

body's orbital plane and location of the frame's x-axis. Currently 

these frames are supported only for the earth. 

• Euler frames: polynomial coefficients, a reference epoch, and an 

axis sequence are used to specify time-dependent Euler angles giving 

the orientation of the frame relative to a second, specified frame as a 

function of time. 

In order to create a reference frame fixed to a spacecraft it’s 

comfortable to adopt the two-vectors frame family: user can choose 

how to orient spacecraft frame with respect to existing vectors in the 

easiest and most useful way.  
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Two-vector frames use two user-specified, non-parallel vectors to 

define the mutually orthogonal axes of a right-handed reference 

frame. In these frames, one vector is parallel to a specified axis of 

the reference frame: this vector is called the “primary vector”. The 

other one, called the “secondary vector” defines another axis: the 

component of the secondary vector orthogonal to the primary vector 

is parallel to a specified axis of the reference frame. Each suitable  

vector may be: 

• position vector, defined by the position of one ephemeris object 

respect to another; 

• target near point vector, defined by as the vector from an observer to 

the nearest point on a specified extended target body to that 

observer; 

• velocity vector, defined by the velocity of an ephemeris target object 

relative to an observing ephemeris object; 

• constant vector, defined as a vector constant in a frame specified by 

the kernel creator. 

Figure 2.8 shows graphically how to use and define two vectors 

frames in an applicative example. 
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Figure 2.8: Two vectors frame. The primary vector (the red one) is defined by the position of the target 
body (the small one) respect to the observer body. The secondary vector (the blue one) is defined as the 
velocity of the target body. The X-axis is associated with the primary vector, the Y-axis with the 
normalized component of the secondary vector orthogonal to primary vector and the Z-axis completes  
the right-handed frame .[3] 

 

 Finally to define a new reference frame, user have to create a frame 

kernel. The format of this file must be conform to the SPICE text 

kernel specification, in other words it has to follow the same rules of 

SPK setup file viewed above. The assignments to define a two 

vectors frame kernels are reported in Annex IV. 

The new reference frame associated with the considered satellite      

(-313) is “Donald” (a fictitious name), and its ID code is 961934 (a 

fictitious number). It is a two vectors reference frame, where the 

primary vector is the position vector of the satellite respect to the 

Earth, and the secondary vector is the satellite velocity respect to the 

Earth. The frame kernel will be: 

 
\begindata 

FRAME_DONALD                = 961934 
FRAME_961934_NAME           = 'DONALD' 
FRAME_961934_CLASS          = 5 
FRAME_961934_CLASS_ID       = 961934 
FRAME_961934_CENTER         = -313 
FRAME_961934_RELATIVE       = 'IAU_EARTH' 
FRAME_961934_DEF_STYLE      = 'PARAMETERIZED' 
FRAME_961934_FAMILY         = 'TWO-VECTOR' 
FRAME_961934_PRI_AXIS       = '-Z' 
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FRAME_961934_PRI_VECTOR_DEF =  
                   'OBSERVER_TARGET_POSITION' 
FRAME_961934_PRI_OBSERVER   = 'EARTH' 
FRAME_961934_PRI_TARGET     = -313 
FRAME_961934_PRI_ABCORR     = 'NONE' 
FRAME_961934_PRI_FRAME      = 'IAU_EARTH' 
FRAME_961934_SEC_AXIS       = 'Y' 
FRAME_961934_SEC_VECTOR_DEF =  

    'OBSERVER_TARGET_VELOCITY' 
FRAME_961934_SEC_OBSERVER   = 'EARTH' 
FRAME_961934_SEC_TARGET     = -313 
FRAME_961934_SEC_ABCORR     = 'NONE' 
FRAME_961934_SEC_FRAME      = 'IAU_EARTH' 

\begintext 
  

Defined spacecraft-fixed frame, for pointing problems the locations 

and the orientations of antennas are required: SPICE system “needs 

to know” how antennas are oriented or rotating with respect with the 

reference frame fixed to the spacecraft. A comfortable way to 

operate with this kind of problems is to create a reference frame for 

each antenna. The reference frames we need to define antennas’ 

orientations belongs to the forth class: these antenna frames have a 

constant orientation with respect to the spacecraft reference frame. 

Hence for our scope we need to define a new reference frame (with a 

new name and a new frame ID) with a text kernel. Since the rotation 

of the antenna frame (TK frame in general) relative to the spacecraft 

frame (RELATIVE frame in general) is fixed (time invariant), 

rotation data can be provided by: 

• 3x3 matrix , M, that converts vectors from the antenna frame to the 

spacecraft frame : VDONALD = M * Vantenna ; 

• a set of 3 Euler angles and axes that can be used to produced M; 

• a SPICE-style quaternion representing M. 
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The first five kernel pool variables required for TK frame 

specifications are the same as the Dynamic Frame defined before. 

For TK frames the assignments are described in Annex IV. 

In order to avoid mistakes, in the following an analysis of Euler 

angles is done. Figure 2.9 shows Roll-Pitch-Yow convention for 

Euler angles. 

  
 

 
Figure 2.9: Roll-Pitch-Yow convention. 

 

If M is the matrix that converts vectors from the RELATIVE frame 

to the TK frame, the angles and the axis must satisfy the relationship: 

 
M = [Φ]axis 3[θ]axis 2[ψ ]axis 1 

 
where   
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This method is particularly suitable for defining antennas reference 

frame: knowing how the antenna is oriented respect to the spacecraft 

frame through Euler angles, user can easily defined the 

corresponding reference frame. In this thesis we are interested to 

analyzed the orientation of Sun and Moon respect to the two 

antennas of the considered satellite (-313): the Main Antenna and the 

Sky Horn Antenna on board Post-EPS satellite for radiometric 

calibration purpose (as it will described  in the next chapter). 

Assumed that the Main Antenna frame’s name is MAIN_ANT, and 

that frame’s matrix orientation is M=[0°]1[4°]2[0°]3, the TK is:  

 
\begindata 

FRAME_MAIN_ANT           = 26786 
FRAME_26786_NAME         = 'MAIN_ANT' 
FRAME_26786_CLASS        = 4 
FRAME_26786_CLASS_ID     = 26786 
FRAME_26786_CENTER       = -313 
TKFRAME_26786_RELATIVE = 'DONALD' 

 TKFRAME_26786_SPEC   = 'ANGLES'  
TKFRAME_26786_ANGLES  = (0,0,0) 
TKFRAME_26786_AXES   = (1,2,3) 
TKFRAME_26786_UNITS   = 'DEGREES' 

\begintext 
 

A similar file is required for the Sky Horn Antenna frame. Assumed 

that its name is SKY_HORN and its matrix orientation is 

M=[0°]1[180°]3[4°]2, the TK is : 
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\begindata 
FRAME_SKY_HORN           = 16208 
FRAME_16208_NAME         = 'SKY_HORN' 
FRAME_16208_CLASS        = 4 
FRAME_16208_CLASS_ID     = 16208 
FRAME_16208_CENTER       = -313 
TKFRAME_16208_RELATIVE = 'DONALD' 

 TKFRAME_16208_SPEC   = 'ANGLES'  
TKFRAME_16208_ANGLES  = (0,180,0) 
TKFRAME_16208_AXES   = (1,2,3) 
TKFRAME_16208_UNITS   = 'DEGREES' 

\begintext 
 

Making an IK file 

The Instrument Kernel (IK) is like a repository for instrument 

specific informations that may be useful in SPICE context. An IK 

always includes specifications for instruments’ field-of-view (FOV) 

size, shape, orientation, beam features and so on. These kernels may 

also include internal instrument timing parameters and other data 

relating to SPICE computations and instrument geometric calibration 

data. Instead, instrument mounting alignment data are specified in 

mission’s frame kernels (FK). 

The main roll of IK is the definition of FOV parameters: since Post-

EPS is a meteorological mission dealing with pointing problems, IK 

is a key file for the mission. Since IK is a SPICE text kernel, the 

format, the structure and the assignment rules are the typical of a text 

kernel. To define univocally a field of view four parameters are 

required: 

• the shape; 

• the boresight; 

• the frame the boresight is defined in; 



Chapter II 

 
 

56

• the boundary vectors. These vector can be defined explicitly or 

through the half angle extents of the FOV. 

Figure 2.10 shows the definition of the mentioned parameters. 
 

  
 
Figure 2.10: Elliptic FOV. Boundary vector can be provided either defining there components, (0,1,4) and 
(2,0,4), or the half angles extents, 14.3° and 26.57°.[11] 

 

For IK frames the required assignments are reported in Annex V. 

Neither the boresight nor the reference vector has to be coaligned 

with one of the FOV frame’s axis, but for convenience, each is 

frequently defined to be along one of the FOV axes. Moreover 

neither the boresight nor corner nor reference vector has to be a unit 

vector, but frequently are so. 

We have to create two instrument kernels, on for each antenna. Since 

only the Main Antenna points towards the Earth, only one IK is 

required to satisfy our pointing requests. 

Assume that the Main Antenna (whose instrument ID is -283284) 

has a circular shape with a spread of three degrees. The 

corresponding IK is: 

 

 



Chapter II 

 
 

57

 
 \begindata 

INS-283284_FOV_SHAPE = 'CIRCLE' 
INS-283284_FOV_FRAME = 'MAIN_ANT' 
INS-283284_BORESIGHT = ( 0.0 0.0 1.0 ) 
INS-283284_FOV_CLASS_SPEC = 'ANGLES' 
INS-283284_FOV_REF_VECTOR = ( 0.0 1.0 0.0 ) 
INS-283284_FOV_REF_ANGLE = 5 
INS-283284_FOV_ANGLE_UNITS = 'DEGREES' 

\begintext 
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 CHAPTER III: SPICE application in Post-EPS 

mission 
 

 

This chapter is focused on the direct application of SPICE system in 

scenario of Post-EPS mission in order to compute satellite’s position, 

Moon and Sun illumination angles on the antennas, and coverage. 

 

 

1. Satellite position 
 

 Satellite’s position is retrieved directly from the satellite’s SPK that 

has been described in the previous chapter (paragraph 2.2). To obtain 

the state vectors of the satellite at a given time, cspice_spkpos may 

be used. This routine returns the state (position and velocity) of a 

target body relative to an observing body, optionally corrected for 

light time (planetary aberration) and stellar aberration. The command 

for the call is: 

 
[state, lt] = cspice_spkpos (targ, et, ref, abcorr, obs)   
 
The three components state vector is required to the SPICE routines 

to compute the coordinates the user needs (figure 3.1).  
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Figure 3.1: Coordinates transformations. Kernels required are: SPICE kernels (in green) provided by 
SPICE itself and kernels  appositely created in order to conduce the analysis (in blue). 

 

For example, in this work Post-EPS satellite’s coordinates have been 

estimated on 11 March 2009 at 12:00:00 UTC (290044866.185526 s 

ET). 

 

In order to retrieve right ascension-declination coordinates (figure 

3.2), cspice_recrad is used.   

 

 
Figure 3.2: Right Ascension-Declination coordinates.[15] 

  

The call is performed by means of the following command: 
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[range, ra, dec] = cspice_recrad (state)    
 
At the given epoch satellite’s coordinates are: 

 
range = 7098.14 km     ra = 189.55 deg     dec = 14.33 deg 

 
 

To retrieve planetocentric coordinates (figure 3.3), cspice_reclat is 

used.   
  

 
 

Figure 3.3: Planetocentric coordinates. 

  

 

The command for the call is: 

 
[radius, lon, lat] = cspice_reclat (state)    
 
At the given epoch satellite’s coordinates are: 

 
range = 7098.14 km     long = -170.45 deg     lat = 14.33 deg 

 
 

Iterating the process for a number of days of propagation, satellite’s 

ground track can be created. The figure 3.4 shows the result obtained 

for Post-EPS satellite’s ground track in one day of propagation.  
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Figure 3.4: Post-EPS Satellite’s ground track. 

 

To retrieve planetographic coordinates, cspice_recpgr is used. The 

call is performed by means of the command: 

 
[lon, lat, al ] = cspice_recpgr(body, state, re, f) 
 
Where body is the name of the planet with which the planetographic 

coordinate system is associated, re is its equatorial radius, and f is 

the flattening coefficient defined by the equation: 

 

equatorial

polarequatorial

radius
radiusradius

f
−

=  

 
The longitude nominal range is 0≤ lon ≤2π, and the latitude nominal 

range is -π/2≤ lat ≤ π/2. The figure 3.5 highlight the difference 

between planetocentric and planetografic coordinate systems. 
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Figure 3.5: Difference between Planetocentric coordinates  and Planetographic coordinates. 
Planetocentric latitude of a point P is the  angle between segment from origin to point P and x-y plane 
(red arc in diagram). Planetograpfic latitude of a point P is the angle between x-y plane and extension of 
ellipsoid normal vector N that connects x-y plane and P (blue arc in diagram). [11] 

 

At the given epoch satellite’s coordinates are: 

 
altitude = 721.31 km     long = 189.55 deg     lat = 14.41 deg 

 
 

To retrieve planetodetic coordinates, cspice_recgeo is used. The 

command for the call is: 

 
[lon, lat, alt ] = cspice_recgeo( state, re, f) 
 
Both planetografic and planetodetic coordinates refers to the 

reference ellipsoid but they have different nominal range.  

At the given epoch satellite’s coordinates are: 

 
altitude = 721.31 km     long = -170.45 deg     lat = 14.41 deg 
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2. Sun and Moon Illumination Angles 
 

Post-EPS is a meteorological observation mission. In this thesis we 

focus our attention on the radiometer mounted on the satellites, 

known as Microwave Imaging/Sounding (MWI-MWS) system. 

MWI-MWS is a multi-spectral microwave imager/sounding for 

meteorology, oceanography, sea-ice/snow/land surface observation 

and other climate applications. 

The radiometer surveys Earth temperatures by means of measured 

antennas output voltages. The antenna output voltage Va and the 

relative temperature Ta are linked by the equation: 

 
( ) offsetrecaoffsetsysa VTTGVTGV ++⋅=+⋅=  

 
where G is the global gain, Tsys is radiometer system temperature 

given by the antenna temperature Ta (which has to be measured) and 

the receiver temperature Trec, Voffset is the offset voltage parameter.  

Since receiver temperature and global gain are not stable due to 

thermal variations, it’s necessary to calibrate the radiometer with two 

referred temperatures (figure 3.6), a Hot Temperature and a Cold 

Temperature, in order to get independent the relationship from these 

variables.   

 



Chapter III 

 
 

64

TC THTA

VC

VH

VA

T

V

 
Figure 3.6: Example of Temperature calibration procedure: subscript c stands for cold and subscript h 
stands for hot.  

 

Using the equation above for the calibration procedure, the following 

system can be written: 

 

( )
( )
( )⎪

⎩

⎪
⎨

⎧

++⋅=
++⋅=
++⋅=

offsetrechh

offsetrecaa

offsetreccc

VTTGV
VTTGV
VTTGV

 

 
which allows to reduce the equation in: 

 

( ) cch
ch

ca
a TTT

VV
VVT +−

−
−

=  

 
 

The hot calibration is obtained by means of a hot load (a sort of 

black body) observation, while the cold calibration is obtained by 

means of cold sky observations (where the well known 3 K of 

microwave background radiation are foreseen).  

The radiometer system requires two antennas: an antenna (Main 

Antenna) pointing to the Earth collecting mission data and another 
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antenna (so called Sky Horn Antenna) pointing to the cold sky for 

microwave background radiation observation.  

The whole antennas system is shown in figure 3.7. 

 

 
 

Figure 3.7: Post-EPS radiometer antennas configuration. 

 

Temperature surveying and calibration measurements required a 

high degree of accuracy and they are greatly affected by Sun and 

Moon illumination angles respect to the measuring antennas: 

sunbeams from the Sun or reflected by the Moon influences antennas 

surveys, increasing the temperatures to measure and the noise on the 

data collected. Since often it is not possible to avoid that sunbeams 

impact on the reflectors it is extremely important to know the 
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illumination angles of these noise sources (Sun and Moon) for each 

antenna of the system. 

In order to retrieve Sun illumination angles (the same process has 

been performed for the Moon) respect to the Main Antenna (the 

process is the same for the Sky Horn antenna), we compute Sun 

position in the Main Antenna reference frame using spkpos SPICE 

routine. The Main Antenna reference frame is provided by the frame 

kernel created in the precedent chapter (paragraph. 2.2). The three 

components of the output vector are converted in azimuth-elevation 

coordinates using recrad routine. For our analysis considering the 

elevation complementary angle φ is more useful. Axes and angles 

convention are shown in figure 3.8.   
  

 
Figure 3.8: Antenna reference frame. Along the z-axis is reported the antenna pattern (main and side 
lobes). AZ stands for azimuth, EL stands for elevation.    

 

In this thesis the analysis of Sun and Moon has been performed on 

antenna radiometer system considering a period of propagation of 

one year. 
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Figures 3.9 and 3.10 report the results obtained in this thesis for Sun 

and Moon illumination azimuth angle and complementary of 

elevation angle respect to the Main Antenna. 

   

 
Figure 3.9: Sun illumination azimuth (in blue) and elevation complementary angle (in green)  angle 
versus orbital time for  Post-EPS radiometer Main Antenna.  
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Figure 3.10: Moon illumination azimuth (in blue) and elevation complementary angle (in green)  angle 
versus orbital time for Post-EPS radiometer Main Antenna. 
 

 

In analysis of results it has to pay attention on complementary of 

elevation angle (φ): in particular for small angles, when sunbeams 

have a bigger intersection area with the antenna pattern, especially 

concerning with the main lobe. We notice that Sun unsuitable angles 

for the Main Antenna repeats about every 183 days, and Moon 

unsuitable angles about every 15 days.  

Figures 3.11 and 3.12 report the results obtained in this thesis for 

Sun and Moon illumination azimuth and elevation angles respect to 

the Sky Horn Antenna.     
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Figure 3.10: Sun illumination azimuth (in blue) and elevation complementary angle (in green)  angle 
versus orbital time  for  Post-EPS radiometer  Sky Horn Antenna.  
  

 
Figure 3.12: Moon illumination azimuth (in blue) and elevation complementary angle (in green)  angle 
versus orbital time for Post-EPS radiometer Sky Horn Antenna. 
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Analyzing angles plot, Sun unsuitable angle for the Sky Horn repeats 

about every 183 days, and Moon unsuitable angles about every 15 

days.  

 

 

3. Coverage analysis 
 

Coverage analysis is required in order to know in how many time the 

antenna sweeps the whole globe surface. Coverage mission 

requirements affect spacecraft’s altitude, design parameters, payload 

final performances. Coverage analysis takes into account swath 

width, the area covered by the scan angle on the ground, antenna 

boresight orientation, FOV shape (Fig 3.13) 

   

 
Figure 3.13:Antenna’s coverage parameters. 
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All these informations are provided to SPICE system by an 

instrument kernel. Since Sky Horn Antenna performs only 

calibration measurements, it is not involved in pointing problems, 

and for this reason coverage has been analysed only for Main 

Antenna. 

Srfxpt SPICE routines allows to compute the surface intercept point 

of a specified ray on a target body at a specified epoch, optionally 

corrected, given an observer and a direction vector defining a ray. 

The command for the call is: 

 
[spoint, dist, trgepc, obspos, found]=cspice_srfxpt(method, targ, et, 

abcorr, obs, dref, dvec) 

 
where spoint is the intercept point on the target, dist is the distance 

between the observer and surface intercept, trgepc is the intercept 

epoch, obspos is the observer position in target body-fixed reference 

frame, found is a logical flag indicating if rays intercept the surface, 

method provides observer surface approximation (at the moment 

only ‘ELLIPSOID’ is supported),  dref is the reference frame in 

which dvec is defined, dvec indicates the vectors starting from the 

observer. Estimated the intercept point, another routine flags on a 

grid map the intercept point plotting results.  

Considering a swath of 1000 km, the plots in figures 3.14, 3.15 and 

3.16 show coverage analysis respectively for 12, 24 and 48 hours of 

propagation and the related coverage ratio. 
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Figure 3.14: Coverage analysis and coverage ratio for Post-EPS mission  in 12 h of propagation. 

 

 
Figure 3.15: Coverage analysis and coverage ratio for Post-EPS mission  in 24 h of propagation. 
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Figure 3.16: Coverage analysis and coverage ratio for Post-EPS mission  in 48 h of propagation. 

 

Referring to the figures 3.14, 3.15 and 3.16 we notes that the full 

coverage (more than 90%) is reached in 48 hours.    
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 ANNEX I: SPICE missions 
 

 

NAIF has developed mission SPICE kernel through several years to 

make easier scientists’ and engineers’ work and to share a set of 

scientific informations with several partners. SPICE system dates 

from about 1991, but some kernels of past missions are still 

available. As of this writing the missions available on NAIF server 

are listed below. 

• APOLLO. This set of  data contains only a very short piece of  Moon 

mission Apollo 15 (07/30/1971 to 08/01/1971) trajectory data in 

SPK format and frame kernels. 

• CASSINI. This set contains all kernels regularly produced by the 

project of Cassini-Huygens American-European mission (1997-

present) studying Saturn and its moons. 

• CLEMENTINE. All type of kernels are available for the Clementine 

mission (02/1994 to 05/1994) officially called Deep Space Program 

Science Experiment (DSPSE) observing Moon and near-Earth 

asteroid 1620 Geographos . 

• CONTOUR. This set of data provides kernels for the Comet Nucleus 

Tour (CONTOUR). Since the spacecraft was lost soon after the 

launch (07/2002), data available are the originally planned trajectory, 

the ephemerides for the mission’s target bodies and the frame 

kernels. 

•  DAWN. This set consists of the planning and operations kernels 

produced for Down mission (09/2007-present ) travelling forward 

the asteroid Vesta and the dwarf planet Ceres. 
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• DEEP IMPACT. This set of data provides the planning and 

operations SPICE kernels for the Deep Impact and EPOXI missions 

(1/2005-present) studying the composition of the interior of the 

comet 9P/Tempel by colliding a section of the spacecraft into the 

comet. 

• DS1.This set contains all types of kernels for the Deep Space I 

mission (10/24/1998 to 12/18/2001) testing technologies to lower the 

cost and risk of future missions. 

• FIDO. This set contains only a frame kernels for the FIDO 

Experimental Rover. These kernels were created in 1999-2000 

during an unfinished attempt to implement SPICE for that vehicle.  

• GLL. This set contains uncompleted kernels for Galileo mission 

(10/1989 to 09/2003) studying Jupiter. 

• GNS. This set provides kernels regularly produced for Genesis 

mission (2001-present) studying solar wind. 

• HAYABUSA. This set provides only SPK for HAYABUSA 

Japanese mission (2003-present) studying a small near-Earth asteroid 

named 25143 Itokawua. 

• HST. This set contains only orbit data in SPK format of the Hubble 

Space Telescope (04/1990-present). 

• IEU. This set consists of only selected trajectory data in SPK format 

of International Ultraviolet Explorer American-European mission 

(01/1978 to 07/2000) studying ultraviolet spectra. 

• JUNO. This set consists of only SPK for the future mission Juno 

planned for 2011. 

• LPM. This set provides only SPK orbit data for Lunar Prospector 

Mission (01/1998-07/1999). 
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• LUNARORBITER. Also this set contains only SPK for Lunar 

Orbiter mission (1966-1968). 

• M01. This set contains all kernels regularly produced by the project 

of 2001 Mars Odyssey mission (2001-present).  

• M10. This set contains a single one SPK for the mission Mariner 10 

(11/1973 to 03/1975) studying mercury and Venus. The available 

kernel covers only from 03/24/1974 to 04/04/1974, which is the 

period of the first Mercury flyby.  

• M9. This set contains a single SPK kernel and an SCLK kernel for 

the mission Mariner 9 (05/1971 to 10/1972). 

• MCO. This set provides all kernels produced by the project Mars 

Climate Orbiter (12/1998 to 10/1999) during the cruise to Mars 

before being destroyed. 

• MER. This set contains kernels regularly produced for the mission 

Mars Exploration Rovers (2003-present). 

• MESSENGER. This set contains all kernels for Messenger mission 

(08/2004 -present) studying Mercury. 

• MEX. This set contains kernels regularly produced for the European 

mission Mars Express (06/2003-present) . 

• MGN. This set provides only SPK kernels produced for Magellan 

mission (08/1990 to 08/1994) studying Venus. 

• MGS. This set contains kernels for the mission Mars Global 

Surveyor (11/1996 to 11/2006). 

• MPF. This set contains all kernels archived for the mission Mars 

Pathfinder (12/1996 to 03 1998) 

• MPL. This set provides SPK kernels produced for the mission Mars 

Polar Lander (01/1999-12/1999). Also kernels produced in 
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anticipation of a successful landing  (which didn’t occur since the 

spacecraft was destroyed) are available. 

• MRO. This set provides kernels for the mission Mars 

Reconnaissance Orbiter (03/2006-present). 

• MSL. This set consists only of SPK and FK kernels produced for the  

future mission Mars Science Laboratory planned for 2011. 

• NEAR. This set contains kernels produced for Near Earth Asteroids 

(02/1996 to 02/2001). 

• NOZOMI. This set provides only trajectory data for Nozomi 

Japanese mission (02/1999 to 01/2004). Data coverage is from the 

launch to the slightly flyby of Mars due to inability to perform orbit 

insertion in Mars. 

• PHOBOS. This set consists only of two trajectory data in SPK 

format produced for the Russian mission Phobos 88 (01/1989 to 

03/1989), before contacts with the spacecraft was permanently lost 

during Mars orbit. 

• PHOENIX. This set provides all kernels produced for PHOENIX 

mission studying Mars (08/2007-present). 

• PIONEER 10. This set contains a single SPK file for the spacecraft, 

Jupiter, the Galilean satellites, Earth and Sun produced for the 

mission Pioneer 10 (03/1972-undefined) studying deep space. It’s a 

merge of several SPK. Data are provided from the launch to 

01/1990. 

• PIONEER 11. This set contains a single SPK file for the spacecraft, 

Jupiter, the Galilean satellites, Earth and Sun produced for the 

mission Pioneer 11 (04/1973-undefined) studying deep space. It’s a 

merge of several SPK. Data are provided from the launch to 

01/1990.  
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• PIONEER 6. This set contains a single SPK file for the spacecraft, 

the planets, the Earth and the Sun produced for the mission Pioneer 6 

(12/1965-undefined) studying deep space. It’s a merge of several 

SPK. Data are provided from 01/1996 to 12/1999. 

• PIONEER 8. This set contains a single SPK file for the 

spacecraftand the Earth produced for the mission Pioneer 8 

(12/1967-undefined) studying deep space. It’s a merge of several 

SPK. Data are provided from 07/1997 to 12/1999. 

• ROCKY 7. This set contains kernels for Rocky 7 Experimental 

Rover field test (05/1997). These kernels were created to 

demonstrate the applicability of SPICE for a rover mission. 

• ROSETTA. This set provides all kernels for Rosetta European 

mission (03/2004-present), studying the comet 67P/Churyumov-

Gerasimenko. 

• SDU. This set provides all kernels regularly produced for Stardust 

mission (02/1999-01/2006) investigating the makeup of the comet 

Wild 2 and its coma. 

• SELENE. This set will contain kernels produced for Selene Japanese 

mission (09/2007-present). 

• SIRTF. This set provides SPK and SCLK kernels produced for the 

Space Infrared Telescope Facility, SIRTF, mission (08/2003-

present). 

• SMART1. This set contains all kernels produced for Small Missions 

for Advanced Research in Technology, SMART, European mission 

(09/2003 to 09/2006). 

• ULYSSES. This set contains only trajectory data in SPK format 

produced for the Ulysses American-European mission (10/1990 to 

06/2008) studying the Sun at all latitudes.    
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• VEGA. This set provides a single SPK for the Russian Vega1 

(12/1984-present) and Vega 2 (12/1984-present) spacecraft and the 

comet Halley during their flyby. Data are provided from 03/01/1986 

to 03/17/1986. 

• VEX. This set provides all kernels for Venus Express European 

mission (10/2005-present). 

• VIKING. This set provides all kernels for the two Viking orbiters 

and two SPK for the landed location of the Viking Landers (1975 to 

1982), studying Mars. 

• VOYAGER. This set provides a volatile and eclectic collection of 

kernels made from assorted data produced by Voyager missions 

(1977-undefined) studying deep space. Data are provided from 

07/1997 to 2050.   
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 ANNEX II: Setup File Generation  
 

 

The required assignments in a setup file are:  

 

INPUT_DATA_FILE   = 'input ephemeris data file name' 

OUTPUT_SPK_FILE   = 'output SPK file name' 

INPUT_DATA_TYPE   = 'STATES' or 'ELEMENTS' or  

   'EQ_ELEMENTS' or 'TL_ELEMENTS' 

OUTPUT_SPK_TYPE   = 5 or 8 or 9 or 10 or 12 or 13 or 15 or 17 

OBJECT_ID         = numeric code assigned to the object.  

Either OBJECT_ID or OBJECT_NAME is     

to be used. If this assignment is absent if      

this OBJECT_NAME is required. If NAIF        

has not assigned an ID code the user may   

select a temporary ID. This ID must be a  

negative number for a spacecraft.  

OBJECT_NAME       = 'NAIF supported object name' 

 The name has to be NAIF supported  for  

 the object. This keyword is required if  

 the OBJECT_ID keyword is absent. If  
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 both keywords are present, the MKSPK  

 program uses the OBJECT_ID and  

 ignores this assignment. 

CENTER_ID         = numeric code assigned to the body which 

is the center of the motion for the object.    

If this keyword is absent, the      

CENTER_NAME keyword must be used. 

CENTER_NAME       = 'NAIF supported body name' 

This is one if the NAIF supported names     

for the center of motion. This keyword  

is required if the CENTER_ID keyword    

is absent. If both keywords are present   

the MKSPK program uses the   

CENTER_ID and ignores this  

assignment. 

REF_FRAME_NAME    = 'reference frame name' 

 If this is not a standard frame supported    

 by NAIF, the definition for this frame    

 must be present in a frame definition     

 kernel file specified in the  

 FRAME_DEF_FILE keyword. 
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PRODUCER_ID       = 'producer identifier' 

DATA_ORDER        = 'ordered list of input parameter names' 

 The names must be delimited with white   

 Space. 

DATA_DELIMITER    = 'delimiter separating input data items' 

 User can select : 'TAB', 'EOL', comma   

 (','), semicolon (';') or white space  

 (' '). Only one of these values can be  

 used. 

LEAPSECONDS_FILE  = 'leapseconds file name' 

More assignments may be needed depending on the data type and 

other conditions. The conditional assignments are: 

PCK_FILE          = ( 'PCK_1 file name' 

                      'PCK_2 file name' 

                       ... 

                      'PCK_n file name' ) 

 This keyword may be absent in the case  

 when you do not need PCK                              

 constants or when these constants are  

 defined with other setup keywords. 

FRAME_DEF_FILE    = 'frame definition file name' 
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 This keyword is required  

 REF_FRAME_NAME keyword is absent. In  

 this case the frame must be defined in a  

 frames definition kernel file. 

COMMENT_FILE      = 'comment file name' 

INPUT_DATA_UNITS  = ( 'ANGLES = angle unit' 

                      'DISTANCES= distance unit' ) 

MKSPK recognizes: RADIANS, 

DEGREES, ARCMINUTES, 

ARCSECONDS, HOURANGLE, 

MINUTEANGLE, SECONDANGLE, 

METERS, KM, CM, MM, FEET, 

INCHES, YARDS, STATUTE_MILES, 

NAUTICAL_MILES, AU, PARSECS, 

LIGHTSECS, LIGHTYEARS. Note that 

 MKSPK assumes that the time units of 

 any input data parameters or constants 

 specified in the setup file are seconds. 

EPOCH_STR_LENGTH  = length of epoch string. 

 This length must be provided to the  

 program in order to enable parsing of the  
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 input data records containing two epoch  

 strings. 

IGNORE_FIRST_LINE = number of initial lines to be ignored  

 while reading input file 

LINES_PER_RECORD  = number of lines in one input record 

TIME_WRAPPER      = '# time wrapper' 

 This assignment is the specification of   

 alphanumeric characters that are used to 

define the "EPOCH" strings. As example, 

'# TDT' or  '# ETSECONDS'. 

START_TIME        = 'start time' 

  If this value is absent the MKSPK    

            program calculates it using data 

STOP_TIME         = 'stop time' 

           If this value is absent the MKSPK    

                 program calculates it using data 

PRECESSION_TYPE   = 'NO PRECESSION' or 

                    'APSIDE PRECESSION ONLY' or 

                    'NODE PRECESSION ONLY' or 

                    'APSIDE AND NODE PRECESSION' 

POLYNOM_DEGREE    = polynomial degree of Lagrange or  
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   Hermite interpolation 

CENTER_GM         = center GM value. 

 If it is absent, the MKSPK program  

 attempts to find this value in a PCK file. 

CENTER_POLE_RA    = the right ascension of the center's north                   

    pole given with respect to the reference 

                                             frame. 

CENTER_POLE_DEC   = the declination of the center's north pole 

given with respect to the reference    

frame. 

CENTER_J2         = center's J2 value. 

 If it is absent, the MKSPK program  

 attempts to find this value in a PCK file. 

CENTER_EQ_RADIUS  = center's equatorial radius. 

 If it is absent, the MKSPK program  

 attempts to find this value in a PCK file. 

SEGMENT_ID        = 'segment identifier' 

APPEND_TO_OUTPUT  = flag indicating whether new segments    

                                             should or shouldn't be appended to an            

                                                        existing SPK file. This keyword can be   

 'YES' or 'NO' . 
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 ANNEX III: Orbital Propagator for Post EPS 

mission  
 

 

%*********************************************************** 
%********  Orbital propagator for Post-EPS mission  ******** 
%*********************************************************** 
%********************* Start of Header *********************  
% PROGRAM NAME:              propag_SSO.m 
% DATE:                      09 March 2009 
% VERSION:                   1.0  
% PURPOSE: This program computes  

      %   satellite’s coordinates and    
% velocities in ECEF frame and     
% create an ephemeris text file.        
% 
% INPUT ARGUMENTS:           Orbital parameters, initial 
%       propagation date, 
% propagation days and 
% propagation step time. 
%  
% OUPUT ARGUMENTS:           ephemeris text file  
% 
% AUXILIARY SUBROUTINES:    SPICE routines 
%********************** End of Header **********************  
%*********************************************************** 
 
 
%service operation 
     
    clc 
    clear all 
    close all 
    current_directory=pwd; 
    addpath(strcat(current_directory,'\mice\src\mice')); 
    addpath(strcat(current_directory,'\mice\lib')); 
    cspice_kclear 
 
% Universal, Earth and orbital constants 
     
    %Earth rotation velocity [rad/s] 
    omegaearth=7.2921158553e-5; 
    %gravitational parameter [Km^3/s^2] 
    mi=398600.4415 ;     
    J2=0.0010826269; 
    %mean Earth equatorial radius [km] 
    Req=6378.13649;  
    %Sun precession [deg/day] 
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    alfapuntosun=0.985647332;   
  
%orbital parameters and initial values 
     
    %height [Km] 
    H  = 720;    
    %satellite orbital radius [km] 
    a=Req+H;     
    %propagation days 
    Nd = 10;      
    %time step [sec] 
    dt = 10;   
    %initial propagation date  
    str= '12 FEB 2009 12:00:00';   
    %initial true anomaly [rad] 
    niC(1)=0;  
    %longitude of the ascending node [rad] 
    OMC=37.5*cspice_rpd;   
    %argument of the periapsis [rad] 
    omC=90*cspice_rpd;   
    %eccentricity 0.00118; 
    eC=0;    
    %major semi-axis [km] 
    aC=a;    
    %minor semi-axis [km]  
    bC=aC*sqrt(1-eC^2); 
    %mean motion [rad/sec] 
    n=sqrt(mi/(a^3));    
    % mean orbital period [s]; 
    T = 2*pi/n;          
    %Keplerian period [s] 
    perkeps=2*pi/n; 
 
% compute orbital inclination 
     
    %Sun precession convertion in [rad/sec] 
    alfapuntosun=(alfapuntosun*(pi/180))/(3600*24);  
    inc=acos(alfapuntosun/(-3/2*J2*sqrt(mi/a^3)*(Req/a)^2)); 
 
%time vector creation 
 
    t = 0:dt:Nd*86400;  
    npunti=length(t); 
 
%time conversion using SPICE routines 
  
    cspice_furnsh= … 
    strcat(current_directory,'\mice\lib\naif0009.tls'); 
    et = cspice_str2et( str ); 
 
%Initial values for eccentric and mean anomaly 
 
    sinEC0=sqrt(1-eC^2)*sin(niC(1))/(1+eC*cos(niC(1))); 
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    cosEC0=(eC+cos(niC(1)))/(1+eC*cos(niC(1))); 
    EC(1)=atan2(sinEC0,cosEC0); 
    MC(1)=EC(1)-eC*sin(EC(1)); 
 
%compute mean and eccentric anomaly 
 
    for it=2:npunti 
        MC(it)=MC(it-1)+n*dt; 
        %Newton beginning 
        dEC=1; 
        iter=1; 
        ECtry(iter)=MC(it); 
    while dEC>10^-6 && iter<10 
        iter=iter+1; 
        ECtry(iter)=ECtry(iter-1)-(ECtry(iter-1)-eC*sin  

  (ECtry(iter-1))-MC(it))/(1-eC*cos(ECtry(iter-1))); 
        dEC=(ECtry(iter)-ECtry(iter-1))/ECtry(iter-1); 
    end 
    EC(it)=ECtry(iter); 
    sinniC=sin(EC(it))*sqrt(1-eC^2)/(1-eC*cos(EC(it))); 
    cosniC=(cos(EC(it))-eC)/(1-eC*cos(EC(it))); 
    niC(it)=atan2(sinniC,cosniC); 
    time(it)=(it-1)*dt;  
    end 
 
 %satellite ECI position [km] 
 
    radiusC=aC*(1-eC*cos(EC)); 
    satposX=radiusC.*(cos(omC+niC).*cos(OMC)-sin(omC+niC).  
    *sin(OMC).*cos(inc)); 
    satposY=radiusC.*(cos(omC+niC).*sin(OMC)+sin(omC+niC).     
    *cos(OMC)*cos(inc)); 
    satposZ=radiusC.*sin(omC+niC).*sin(inc); 
 
%Coefficients for velocity computations 
 
    l_1=cos(OMC)*cos(omC)-sin(OMC)*sin(omC)*cos(inc); 
    m_1=sin(OMC)*cos(omC)+cos(OMC)*sin(omC)*cos(inc); 
    n_1=sin(omC)*sin(inc); 
    l_2=-cos(OMC)*sin(omC)-sin(OMC)*cos(omC)*cos(inc); 
    m_2=-sin(OMC)*sin(omC)+cos(OMC)*cos(omC)*cos(inc); 
    n_2=cos(omC)*sin(inc); 
 
%Satellite ECI velocity [km/s] 
 
    satvelX=n*aC./radiusC.*(bC.*l_2.*cos(EC)-aC.*l_1.   
    *sin(EC)); 
    satvelY=n*aC./radiusC.*(bC.*m_2.*cos(EC)-aC.*m_1.  

          *sin(EC)); 
    satvelZ=n*aC./radiusC.*(bC.*n_2.*cos(EC)-aC.*n_1.  
    *sin(EC)); 
 
%conversion from ECI to ECEF 
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    %rotation velocity of ECEF with respect to ECI 
    w=[0;0;omegaearth];   
    to=t(1); 
    for it=1:npunti 
        t_k=t(it); 
        theta(it)=omegaearth*(t_k-to);     
        %transformation matrix  
        R(1,:)=[cos(theta(it)),sin(theta(it)),0]; 
        R(2,:)=[-sin(theta(it)),cos(theta(it)),0]; 
        R(3,:)=[0,0,1]; 
        satpos=[satposX(it),satposY(it),satposZ(it)]; 
        satvel=[satvelX(it),satvelY(it),satvelZ(it)]; 
        satposECEF(:,it)=R*satpos'; 
        satvelECEF(:,it)=R*satvel'; 
    end 
 
%print ephemeredes in output file 
 
    eph= fopen('ephemerisdata.txt','wt'); 
    EPHEMERIS = [time+et;satposECEF;satvelECEF ]; 
    for ii = 1:npunti 
        for kk=1:7 
            fprintf(eph,'%12.6f\t',EPHEMERIS(kk,ii)); 
            end 
    fprintf(eph,'\n'); 
    end 
    fclose (eph); 
    type ephemerisdata.txt 
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 ANNEX IV: Frame Kernel Generation 
 

 

The required assignments in a two vectors frame kernel are: 

 

FRAME_<f_name>    = <f_ID> 

The numeric code 

assigned to the reference 

frame. 

FRAME_<f_ID>_NAME    = <f_name> 

The name chosen for the 

frame must not exceed 26 

characters.  

FRAME_<f_ID>_CLASS    = The numeric code that  

     identifies the class frame 

FRAME_<f_ID>_CLASS_ID   = <f_ID> 

FRAME_<f_ID>_CENTER   = <spacecraft_ID> 

        The numeric code for the  

object chosen as the 

center of the new 

reference frame. This 
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assignment allows to 

connect an object to his 

body-fixed frame. 

FRAME_<f_ID>_RELATIVE   = 'Reference frame name' 

The reference frame 

name the new frame is 

oriented with. 

FRAME_<f_ID>_DEF_STYLE   = 'PARAMETERIZED' 

FRAME_<f_ID>_FAMILY   = 'TWO-VECTOR' 

     Or 'MEAN_EQUATOR_AND_EQUINOX_OF_DATE' 

                Or 'TRUE_EQUATOR_AND_EQUINOX_OF_DATE' 

     Or 'MEAN_ECLIPTIC_AND_EQUINOX_OF_DATE' 

     Or 'EULER' 

FRAME_<f_ID>_PRI_AXIS   = 'First axis' 

FRAME_<f_ID>_PRI_VECTOR_DEF   = 'Primary vector' 

          Suitable chances are: 

    'OBSERVER_TARGET_POSITION' 

    'OBSERVER_TARGET_VELOCITY' 

    'TARGET_NEAR_POINT' 

    'CONSTANT'     

FRAME_<f_ID>_PRI_FRAME   = 'Reference frame name' 
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Reference frame name 

the primary vector is 

defined in. 

FRAME_<f_ID>_PRI_OBSERVER    = 'Observer’s name' 

FRAME_<f_ID>_PRI_TARGET   = 'Target’s name' 

FRAME_<f_ID>_PRI_ABCORR   = 'Flag for corrections' 

FRAME_<f_ID>_SEC_AXIS   = 'Second axis' 

FRAME_<f_ID>_SEC_VECTOR_DEF  = 'Secondary vector' 

Suitable chances are: 

    'OBSERVER_TARGET_POSITION' 

    'OBSERVER_TARGET_VELOCITY' 

    'TARGET_NEAR_POINT' 

    'CONSTANT'    

FRAME_<f_ID>_SEC_FRAME   = 'Reference frame name' 

Reference frame name 

the secondary vector is 

defined in. 

 

FRAME_<f_ID>_SEC_OBSERVER    = 'Observer’s name' 

FRAME_<f_ID>_SEC_TARGET   = 'Target’s name' 

FRAME_<f_ID>_SEC_ABCORR   = 'Flag for corrections' 
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For TK frames the assignments are: 

 

FRAME_<f_name>    = <f_ID> 

FRAME_<f_ID>_NAME    = <f_name> 

FRAME_<f_ID>_CLASS    = class ID 

FRAME_<f_ID>_CLASS_ID  = <f_ID> 

FRAME_<f_ID>_CENTER   = <spacecraft_ID> 

TKFRAME_<f_ID>_RELATIVE   = 'Relative frame name' 

TKFRAME_<f_ID>_SPEC   = 'MATRIX' 

   or 'ANGLES' 

   or 'QUATERNION' 

According to the choice, in the following each specification is 

described.  

To define a rotation using a matrix, the assignments are: 

TKFRAME_<f_ID>_SPEC   = 'MATRIX' 

TFRAME_<f_ID>_MATRIX   = (  matrix_value [1][1],  

           matrix_value [2][1],  

    matrix_value [3][1],  

   matrix_value [1][2],  

   matrix_value [2][2],  

  matrix_value [3][2],  
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   matrix_value [1][3],  

   matrix_value [2][3],  

   matrix_value [3][3] ) 

To define a rotation using a Euler angles (positive 

counterclockwise), the assignments are: 

TKFRAME_<f_ID>_SPEC   = 'ANGLES' 

TKFRAME_<f_ID>_ANGLES   = (angle1, angle2, angle3) 

TKFRAME_<f_ID>_AXES    = (axis 1,  axis 2,  axis 3) 

     The axes must be chosen     

     from the set of integers   

     1,2,3 where 1 stands for  

     the x-axis, 2 for the y-  

     axis, and 3 for the z-axis. 

TKFRAME_<f_ID>_UNITS    = 'angle units' 
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 ANNEX V: Instrument Kernel Generation 

 

 

The required assignments for instrument kernels are: 

 

INS<in_ID>_FOV_SHAPE  = 'CIRCLE'  

or 'ELLIPSE'  

or 'RECTANGLE'  

or 'POLYGON' 

The instrument ID must 

be a negative number.  

INS<in_ID>_FOV_FRAME   = 'Reference frame' 

    The name of the       

    reference frame the   

    boresight and the   

    boundary vectors are   

     defined in. 

INS<in_ID>_BORESIGHT   = ( X, Y, Z ) 

 

In the case of explicit boundary vectors definition:  
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INS<in_ID>_FOV_CLASS_SPEC  = 'CORNERS'  

INS<in_ID>_FOV_BOUNDARY_CORNERS = ( X1, Y2, Z3, 

… … … 

Xn, Yn, Zn ) 

 

In the case of half angles extents definition:  

 

INS<instr_ID>_FOV_CLASS_SPEC  = 'ANGLES' 

 

INS<instr_ID>_FOV_REF_VECTOR  = ( X, Y, Z ) 

Reference vector that,   

together with the 

boresight vector, define 

the plane in which the 

half angle is measured. 

INS<instr_ID>_FOV_REF_ANGLE  = halfangle1 

INS<instr_ID>_FOV_CROSS_ANGLE = halfangle2 

This angle is measured 

in the plane normal to 

last plane and containing 

the boresight vector. 

INS<instr_ID>_FOV_ANGLE_UNITS = 'angle units'
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 CONCLUSIONS 
 

 

In this thesis an analysis of source noise and coverage of the 

radiometer which will be installed on board of MetOp satellite for 

Post-EPS mission has been performed by means of a tool developed 

in MATLAB software language. The tool takes great advantage  of 

SPICE routines creating a powerful and useful source for 

geometrical and radiometric analysis. SPICE is a library, provided 

by the NAIF node of NASA Planetary Data System, which allows 

scientists and engineers to share data analysis and scientific results 

come from past mission to improve future mission analysis.  

This study has pointed out how powerful and high level 

performances SPICE system is. Creating apposite kernels and using 

SPICE “built-in” routines we have developed a complete software 

that with few basic inputs, such as orbital and propagation 

parameters, retrieve geometrical and instrumental data fundamental 

for mission analysis. Figure C.1 summarises software structure 

showing required inputs and the logical steps developed and 

automated to retrieve needed results. Kernels required are: SPICE 

kernels (in green) provided by SPICE itself and kernels  appositely 

created in order to conduce the analysis (in blue). Moreover, all 

routines enclosed in blue rectangles are already provided by SPICE 

system, while routines in yellow rectangles are not provided by 

NAIF. 

This thesis has been focused on the computation and analysis of Sun 

and Moon illumination angles on radiometer’s antennas and 
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instrument coverage. These analyses are very important for mission 

success: sunbeams come from the Sun or reflected by the Moon 

influences antennas surveys, increasing the temperatures to measure 

and the noise on the data collected. Since often it is not possible to 

avoid that sunbeams impact on the reflectors it is extremely 

important to know the illumination angles of these noise sources 

(Sun and Moon) for each antenna of the system. Also coverage 

analysis is fundamental: coverage mission requirements affect 

spacecraft’s altitude, design parameters and payload final 

performances. As reported in chapter 2, for Post-EPS mission the 

full coverage (more than 90%) is reached in 48 hours. 

 

Regarding to the developed software, it has the advantage of 

remaining valid also for different mission frameworks employing 

pointing problems, changing instrument and mission parameters. Of 

course the implementation in the future of a more detailed  orbital 

propagator will allow to analyze better mission performances and 

consequently to get better instrumental analysis.           
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Figure C1: logical summary of the developed software. 
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 ACRONYMS 
 

 

API: Application Programming Interface 

ASCII: American Standard Code for International Interchange 

AU: Astronomical Unit 

AZ: AZimuth 

CK: Camera Kernel 

CONTOUR: COmet Nucleus TOUR 

DEC: Declination 

DS: Deep Space 

DSPSE: Deep Space Program Science Experiment 

ECEF: Earth Centered Earth Fixed 

ECI: Earth Centered Inertial 

EK: Event Kernel 

EL: ELevation 

EPS: EUMETSAT Polar System 

ET: Ephemeris Time  

EUMETSAT: European Organisation for the Exploration of  

  Meteorological Satellites 

FES2004: Finite Element Solution tidal atlates 2004 

FK: Frame Kernel 
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FOV: Field Of View 

GGM02: GRACE Gravity Model 2002  

GLL: Galileo 

GNS: Genesis 

GOS: Global Operational Satellite Observation System 

HST: Hubble Space Telescope 

IAU: International Astronomical Union  

ICFR: International Celestial Reference Frame 

IEU: International Ultraviolet Explorer 

IJPS: Initial Joint Polar-Orbiting Operational Satellite System 

IK: Instrument Kernel 

LEO: Low Earth Orbit 

LLR: Lunar Laser Range 

LPM: Lunar Prospector Mission 

LTDN: Local Time of Descending Node 

MCO: Mars Climate Orbiter 

MDA: Modified Difference Arrays 

MER: Mars Exploration Rover 

MetOP: Meteorological Operational 

MEX: Mars Express 

MEX: Matlab External Interface 
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MGN: Magellan 

MGS: Mars Global Surveyor  

MO: Mars Odyssey  

MPF: Mars PathFinder 

MPL: Mars Polar Lander 

MRO: Mars Reconnaissance Orbiter 

MSL: Mars Science Laboratory 

MWI: MicroWave Imaging 

MWS: MicroWave Sounding 

NAIF : Navigation and Ancillary Information Facilities. 

NOAA: National Oceanic an Atmospheric Administration 

NWP: Numerical Weather Prediction 

PDS: Planetary Data System. 

PCK: Planet Constant Kernel 

PPN: Parameterized Post Newtonian formalism 

RA: Right Ascension 

SCL: Spacecraft Clock 

SIRTF: Space InfraRed Telescope Facility 

SMART: Small Missions for Advanced Research in Technology  

SPICE: Spacecraft Planet Instrument C-matrix Events 

SPK: Spacecraft Kernel 
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SSB: Solar System Barycentre 

SSO: Sun-Synchronous Orbit  

TAI: International Atomic Time 

TDB: Barycentric Dynamical Time 

TDT: Terrestrial Dynamical Time 

TK: Text Kernel 

UT: Universal Time  

UTC: Coordinated Universal Time 

VEX: Venus EXpress 
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