

I

Seconda Università degli Studi di
Napoli

Facoltà di Ingegneria
Corso di Laurea in Ingegneria Aerospaziale

TESI di LAUREA

NAIF and SPICE library: an application in

scenario of Post-EPS mission

Relatore
Candidato
Ch.mo Prof. Ing. Marco D’Errico Salvatore Tuosto
Dipartimento di Ingegneria Aerospaziale e Meccanica Matr. 831/247

Correlatore
Dott.ssa M. Rosaria Santovito
Consorzio di Ricerca su Sistemi di Telesensori Avanzati
Co.Ri.S.T.A. - Napoli

Anno Accademico 2007-2008

I

Per
aspera sic

itur ad
astra.

(Seneca)

Table of Contents

I

 TABLE OF CONTENTS

Introduction 2

1. Introduction to NAIF library and fundamentals concepts 4

1.1 Planetary Data System and NAIF 4

1.2 SPICE System 7

1.3 Key concepts and definitions 13

1.4 Introduction to MICE 22

1.5 SPICE Ephemeris Subsystem SPK 26

2 Kernels generation 33

2.1 Post–EPS mission 34

2.2 Making kernels 37

3 SPICE application in Post-EPS mission 58

3.1 Satellite position 58

3.2 Sun and Moon Illumination Angles 63

3.3 Coverage analysis 70

Annex I: SPICE missions 74

Annex II: Setup File Generation 80

Annex III: Orbital Propagator for Post-EPS 86

Annex IV: Frame Kernel Generation 90

Annex V: Instrument Kernel Generation 95

Conclusions 97

Acronyms 100

Bibliography 104

Acknowledgements 106

Table of Images

II

 TABLE OF IMAGES

Chapter I (Introduction to NAIF library and fundamentals concepts)

3.4 Planetary Data System block diagram 5

3.5 Ancillary Data Information 7

3.6 Definition of UT1 14

3.7 Difference between UTC and UT1 due to Earth rotation 14

3.8 Inertial reference frame 18

3.9 Earth Centered Earth Fixed Reference Frame 19

3.10 Light Time Aberration phenomenon 21

3.11 Stellar Aberration phenomenon 21

3.12 Example of ephemeris objects 27

3.13 Example of conventions 27

Chapter II (Kernels generation)

2.1 EP

S contributes to the GOS 34

2.2 Pos

t-EPS mission plan 35

2.3 Pos

t-EPS orbit geometry 36

2.4 Lo

gical summary of kernels generation 38

Table of Images

III

2.5 Lo

gical Organization of an SPK file 39

2.6 Lo

gical diagram for making SPK 42

2.7 Or

bital propagator user interface 44

2.8 Tw

o vectors frame. 51

2.9 Rol

l-Pitch-Yow convention 53

2.10 Elli

ptic FOV 56

Chapter III (SPICE application in Post-EPS mission)

3.1 Coordinates transformations 59

3.2 Right Ascension-Declination coordinates 59

3.3 Planetocentric coordinates 60

3.4 Post-EPS Satellite’s ground track 61

3.5 Difference between Planetocentric coordinates and

Planetographic coordinates 62

3.6 Example of Temperature calibration procedure 64

3.7 Post-EPS radiometer antennas configuration 65

3.8 Antenna reference frame 66

3.9 Sun illumination angles on Main Antenna 67

3.10 Moon illumination angles on Main Antenna 68

3.11 Sun illumination angles on Sky Horn Antenna 69

3.12 Moon illumination on Sky Horn Antenna 69

Table of Images

IV

3.13 Antenna’s coverage parameters 70

3.14 Coverage analysis in 12 h of propagation 72

3.15 Coverage analysis in 24 h of propagation 72

3.16 Coverage analysis in 48 h of propagation 73

Introduction

1

 INTRODUCTION

This study has been developed in Naples at Co.Ri.S.T.A.

(Consortium of Research on Advanced Remote Sensing System), in

scenario of Post-EPS (EUMETSAT Polar System) mission. Post-

EPS satellites, developed by ESA (European Space Agency) on

behalf of EUMETSAT (European Organisation for the Exploitation

of Meteorological Satellites) provide more precise details about

atmospheric temperature and humidity profiles, fundamental for

weather forecasting and climate monitoring. This programme has

brought a new era in the observations of Earth’s weather, climate

and environment, and it will significantly improve operational

meteorology, in particular Numerical Weather Prediction (NWP),

able to compute forecasts ranging from a few hours up to 10 days

ahead. Researchers of Co.Ri.S.T.A. are members of the science team

devoted to study performances of the microwave radiometer for

temperature measurements.

The purpose of this work is to analyze Post-EPS radiometer

coverage and Sun and Moon illumination angles respect to the

radiometer, fundamental for mission success. For this aim an

innovative method has been studied and developed, never used

before in this kind of mission. The whole work has been developed

using SPICE library, provided by the NAIF node of NASA Planetary

Data System (PDS). SPICE is a collection of data, tools, routines,

software, that allows scientists and engineers to share data analysis

and scientific results come from past mission to improve future

Introduction

2

mission analysis. Studying NAIF database, a good knowledge of

SPICE system has been acquired, earning familiarity with this

method. Using MATLAB as interface, we have developed a

software, creating apposite tools and data files (called kernels) for

this detailed mission analysis.

The thesis is organized in three chapters:

Chapter 1 introduces SPICE system and key concepts, dealing with

kernels’ functions, SPICE software and routines, focusing on

MATLAB interface.

Chapter 2 presents Post-EPS mission and the application of the

SPICE system in mission scenario, illustrating kernels structure and

their generation in order to analyze radiometer geometry.

Chapter 3 shows results of illumination angles analysis and

radiometer coverage.

Chapter I

4

 CHAPTER I: Introduction to NAIF library and

fundamentals concepts

1. Planetary Data System, NAIF and SPICE

SPICE is an information system built to assist scientists and

engineers in planning and interpret scientific observations,

modeling, planning and executing activities needed to conduct

planetary exploration missions. SPICE system includes a large

range of software, mostly in the form of subroutines to

incorporate in application programs in order to read SPICE data

files and to compute derived observation geometry, such as

altitude, latitude, longitude, and illumination angles. These

software and routines are black boxes, the algorithm existing

behind routines is not visible and they are for NAIF staff use

only. SPICE is a collection of data, tools, routines, software,

that allows scientists and engineers not only to make an

accurate and precise mission analysis, but also to share data

analysis and scientific results come from past mission to

improve future mission analysis. The use of SPICE extends

from mission concept development through the post-mission

data analysis phase. In the following, we describe in detail

SPICE system structure.

The Planetary Data System (PDS) archives and distributes scientific

data from NASA planetary missions, astronomical observations, and

Chapter I

5

laboratory space measurements. The PDS is organized as a

federation of 8 Nodes and several Subnodes (see Fig.1.1):

Fig. 1.1: Planetary Data System block diagram. [9]

• The Atmosphere Node is responsible for the acquisition,

preservation, and distribution of all atmospheric data from all

planetary missions (excluding Earth observations);

• the Geosciences Node deals with data that are relevant to the

geosciences disciplines, the study of surfaces an interiors of

terrestrial planetary bodies. Its primary goal is to ensure that the

geosciences data sets coming from each planetary missions are

properly documented and archived;

• the Planetary Plasma Interactions Node is responsible for the

acquisition, preservation, and distribution of field and particle data

from all planetary missions;

Chapter I

6

• the Imaging Node maintains and distributes the archives of planetary

image data acquired from NASA’s missions. Its primary goal is to

enable the science community to perform image processing and

analysis of the data;

• the Rings Node deals with archiving and distributing scientific data

sets relevant to planetary ring systems. Most of this data sets are

from Voyager missions, Hubble telescope and other Earth-based

telescopes;

• the Small Bodies Node provides data from comets, asteroids an

interplanetary dust;

• the Navigation and Ancillary Information Facilities (NAIF) Node is

responsible for design and implementation of the SPICE concept,

such as archiving, distributing and accessing observation geometry

and related ancillary data used in mission design, mission evaluation,

observation planning and science data analysis;

• the Engineering Node provides systems engineering support to the

entire PDS, dealing with global aspects such as standards (data,

software, documentation), technology investigations, catalogue

development an implementation.

NAIF serves as the “ancillary data node”, archiving and distributing

the SPICE kernel files produced by several missions. NAIF also

distributes generic ephemeris data for planets, satellites, comets and

asteroids. An ephemeris is a table of values that gives the positions

of astronomical objects in the sky at a given time or for intervals of

time.

Ancillary data helps scientists and engineers to determine where the

spacecraft is located, how its instruments are oriented, what is the

Chapter I

7

location, size, shape and orientation of the target, what events are

occurring on the spacecraft (or on the ground) that might affect

interpretation of observations and performances of the payloads as

shown in figure 1.2.

Figure 1.2: Ancillary Data Information. [11]

Ancillary data are collected from the spacecraft, from the mission

control centre, from spacecraft and instrument builders, and from the

scientists. SPICE is used to organize and package all these data in

file types –called “kernels”.

2. SPICE System

SPICE stands for “Spacecraft Planets Instrument C- Matrix Events”.

The acronym is quite intuitive, except for “C” that stands for

“camera”, referring to the camera installed on most of spacecrafts.

The principal SPICE system components are two:

Chapter I

8

• data files, often called Kernels;

• software, often known as Spice toolkit.

Kernels

SPICE kernels are composed of navigation and other ancillary

informations that has been structured and formatted for easy access

and correct use by the planetary science and engineering

communities. So Kernels are files of “low level” ancillary

informations that can be used, linked with other files and using the

SPICE toolkit, to find out “high level” geometrical informations, as

latitude, longitude, field of view and other similar data.

In the following, SPICE acronym and kernel file contents are

summarized:

S- Spacecraft ephemeris, given as a function of time (SPK);

P- Planet, satellite, comet, or asteroid ephemeredes, or more

generally, location of any target body, given as a function of time

(PCK);

I- Instrument description kernel, containing descriptive data peculiar

to a particular scientific instrument, such as field-of-view size, shape

and orientation parameters (IK);

C- Pointing kernel, containing a transformation, traditionally called

the C-matrix, which provides time-tagged pointing (orientation)

angles for a spacecraft structure upon which science instruments are

mounted. May also include angular rate data (CK);

Chapter I

9

E- Events kernel, summarizing mission activities - both planned and

unanticipated (EK).The Events kernel idea has not taken hold. After

Cassini it may disappear.

There are also other important components of the SPICE, even if not

contained in the SPICE acronym:

• “Frame kernel” contains specifications for the assortment of

reference frames that are typically used by flight projects. This file

also includes mounting alignment information for instruments,

antennas and perhaps other structures of interest (FK);

• “Spacecraft Clock Kernel” (SCLK),contains coefficients used for

time conversion from Spacecraft Clock (SCLK) to Ephemeris Time

(ET);

• “Leap seconds kernel” (LSK) contains a second tabulation used for

time conversion from Coordinated Universal Time (UTC) to

Ephemeris Time (ET).

SPICE kernels can be downloaded from

ftp://naif.jpl.nasa.gov/pub/naif/generic_kernels.

Common usage for SPICE kernel file name extensions is:

t* text format (e.g. pck00008.tpc)

b* binary format (e.g. de421.bsp)

x* transfer format (e.g. de421.xsp)

SPICE toolkit

The SPICE system includes the SPICE Toolkit, a collection of

software. The principal component of this toolkit is a library of

subroutines needed to read the kernel files and to calculate

Chapter I

10

observation geometry parameters of interest. Users can integrate

these SPICE toolkit subroutines into their own application such as

ANSI FORTRAN 77, C, IDL and MATLAB.

Generic SPICE Toolkits have an associated version number. As of

this writing (February 2009) the available version is N0062, released

on march 2008. The SPICE Toolkit can be downloaded from

ftp://naif.jpl.nasa.gov/pub/naif/toolkit. In this transfer folder the

toolkit is available for different platforms (PC, MAC,…) , operating

systems (WINDOWS, LINUX, UNIX,…) and compilers.

For the purpose of this study we analyse the SPICE Toolkit by

means its interface MICE with the compiler MATLAB 7.5 (it has to

be noted that NAIF built and tested MICE using MATLAB version

7.4) on a PC platform for WINDOWS.

NAIF distributes MICE as a complete, standalone package. The

package includes:

• the CSPICE source files;

• the MICE interface source code;

• platform specific build scripts for MICE and CSPICE;

• an HTML based help system for both MICE and CSPICE;

• the MICE MEX shared library and the M wrapper files.

The system is ready for use after installation of the library.

The toolkit directory (directory structure for different interface is

almost identical) consists of:

• data: cookbook example kernel (used only for training);

• doc: text documents and HTML documentation. A toolkit User’s

Guide, where everything about executable and SPICE software is

explained. The extensions of these files can be *.ug (as User’s

Chapter I

11

Guide) and *.req (as “Required Reading” reference documents): they

can be opened with a common text editor;

• include: header files;

• lib: toolkit libraries;

• src: source code directories for executables and libraries;

• exe: utility programs. They allow to make several operations on

kernel files, such as taking out comments, converting a binary format

in a “transfer” one (to transfer files on computers that use different

binary files storage).

These programs are:

• brief.exe : command line program that displays a contents and time

coverage summary for SPK or binary PCK files;

• ckbrief.exe: command line program that summarizes the pointing

coverage for CK files;

• commnt.exe: command line program that reads, adds, extracts or

deletes comments from SPICE binary kernel files;

• chronos.exe: command line program that converts between several

time systems and time formats;

• inspect.exe: interactive program that examines the contents of an

events component (ESQ) of an E-kernel;

• mkspk.exe: program that creates an SPK file from a text file

containing trajectory informations;

• msopck.exe: command line program that converts attitude data

provided in a text file as UTC, SCLK or ET-tagged quaternions,

Euler angles or matrices, optionally accompanied by angular

velocities;

Chapter I

12

• simple.exe: program that calculates the angular separation of two

target bodies as seen from an observing body;

• spacit.exe: program that converts kernel in transfer format to binary

format, converts binary kernels to transfer format and summarizes

the contents of binary kernels;

• spkdiff.exe: program that computes differences between geometric

states obtained from two SPK files and either displays these

differences or shows statistics about them;

• spkmerge.exe: program that subsets or merges SPK files into a

single one;

• states.exe: program that demonstrates the use of SPK files and

subroutines by computing the state of a target body as seen from an

observing body at a number of epochs within a given time interval;

• subpt.exe: program that demonstrates the use of CSPICE in

computing the apparent sub-observer point on a target body;

• tictoc.exe: program that demonstrates the use of CSPICE time

conversion utility routines string ET and ET UTC;

• tobin.exe: command line program that converts transfer format SPK,

CK and EK files to binary format;

• toxfr.exe: command line program that converts binary format SPK,

CK, EK files to transfer format;

Chapter I

13

3. Key concepts and definitions

 In addition to the description of SPICE library and its utility

programs, it seems important also to clarify the definitions of

fundamentals concepts, like time, reference frames and aberration

corrections in order to avoid misunderstanding in the following.

Time

Time is the fundamental dimension in almost every branch of

science. The basis for scientific time is a continuous count of second

based on two hundred atomic clocks in over fifty national

laboratories, known as the International Atomic Time (TAI). Due to

the averaging, it’s far more stable than any clock would be alone.

The Atomic Time counts simply atomic seconds past the

astronomically determined instant of midnight (00:00:00) of 1st

January 1958 at Royal Observatory of Greenwich. The standard that

gives a name to each second of TAI is known as Universal

Coordinated Time (UTC). This standard is the basis of modern civil

time. UTC dates are represented as strings, such as

“26 JULY 1986 1:30:07.162 (UTC)”

As shown in figure 1.3, the Universal Time (UT1) is a timescale

based on Earth rotation by observing celestial bodies crossing the

meridian every day. Astronomers have preferred observing meridian

crossing of stars over observations of the Sun, because these are

more accurate.

Chapter I

14

Figure 1.3: Definition of UT1. [11]

Ideally, UTC noon and astronomical noon at Greenwich (UT1)

should occur simultaneously (fig. 1.4) since the Earth rotation is not

uniform.

Figure 1.4: Difference between UTC and UT1 due to Earth rotation [11]

When the difference between UTC and UT1 becomes greater than

0.9 atomic seconds, a “leap second” is added (or removed). Leap

UT1

Chapter I

15

seconds are normally added to the end of a designed UTC day, either

June or December.

The sequence will be:

… DECEMBER 31 23:59:57
… DECEMBER 31 23:59:58
… DECEMBER 31 23:59:59
… DECEMBER 31 23:59:60
… JANUARY 1 00:00:00

 Rather then

… DECEMBER 31 23:59:57
… DECEMBER 31 23:59:58
… DECEMBER 31 23:59:59
… JANUARY 1 00:00:00

Leap seconds are very important in using SPICE. For a temporal

conversion, routines always require a LSK, a text file containing the

leap seconds updated list.

A sample of an LSK is:

\begindata

DELTET/DELTA_T_A = 32.184
DELTET/K = 1.657D-3
DELTET/EB = 1.671D-2
DELTET/M = (6.239996D0
1.99096871D-7)

DELTET/DELTA_AT = (10, @1972-JAN-1
11, @1972-JUL-1
12, @1973-JAN-1
13, @1974-JAN-1
14, @1975-JAN-1
15, @1976-JAN-1
16, @1977-JAN-1
17, @1978-JAN-1

Chapter I

16

18, @1979-JAN-1
19, @1980-JAN-1
20, @1981-JUL-1
21, @1982-JUL-1
22, @1983-JUL-1
23, @1985-JUL-1
24, @1988-JAN-1
25, @1990-JAN-1
26, @1991-JAN-1
27, @1992-JUL-1
28, @1993-JUL-1
29, @1994-JUL-1
30, @1996-JAN-1
31, @1997-JUL-1
32, @1999-JAN-1
33, @2006-JAN-1
34, @2009-JAN-1)

\begintext

Ephemeris time (ET) is an uniform timescale used in ephemerides

of celestial bodies. Two kinds of ephemeris time exist: Barycentric

Dynamical Time (TDB) and Terrestrial Dynamical Time (TDT). ET

and TDB are used synonymously in SPICE documentation. The

TDB standard is used to describe the motion of celestial bodies

relative to Solar System barycentre, while the TDT standard is used

to describe the motion of bodies next to the Earth. These standard are

linked by the relation :

TDB = TDT + 0.001657 sin(E + 0.01671sin(E))

TDB is also linked with TAI by a constant values, in other words

their difference is always 32.184 seconds:

TDB – TAI = 32.184 s

Chapter I

17

ET (or TDB) counts seconds past the reference epoch indicated with

J2000 (approximately 1 January 2000, 12:00:00 at Greenwich).

For example, the precedent string

26 JULY 1986 1:30:07.162 (UTC)

correspond to

-424002537.65 seconds past the ephemeris epoch J2000

Most of spacecrafts has onboard clocks (Spacecraft Clock, SCL) to

control time coverage of instruments. These clocks don’t have linear

time progress, so relations between SCLK, ET and UTC can’t be

described by linear functions.

Mission lifetimes are divided in several partitions where the clock

works continuously. So time strings in spacecraft clocks are always

preceded by the partition number, such as

1/4132564.034

where “1” is the partition number and the left numbers indicate the

seconds of that partition.

Sometimes, in SPICE documentation the concept of Julian Date

occurs to determine easily the number of days between two different

epochs. This standard counts days and day fractions (in Julian

Proleptic Calendar) past the noon (Greenwich time) of 1st January

4713 b.C.

Reference Frames

SPICE routines often ask users to choose in which reference frame

the outputs have to be given. This choice is very important for the

Chapter I

18

interpretations and later usage of outputs. SPICE supports several

types of reference frames, such as:

• inertial reference frame

• body – fixed reference frame

• instrument – fixed reference frame

Inertial reference frames neither rotate or accelerate respect to

fixed star. In these frames Newton’s Laws are valid and they can be

applied. SPICE usually uses J2000 coordinate system, where the Z-

axis is aligned with Earth rotating axis, pointing in the direction of

the north pole, the X-axis points in the vernal equinox direction (at

J2000 epoch) and the Y-axis is defined so as to form a right-handed

set of coordinate axis (as shown in figure 1.5).

Figure 1.5: Inertial reference frame. [11]

Chapter I

19

Body – fixed reference frames are tied with the surface of a body,

centred at its centre and rotate respect to inertial frames. In SPICE

documentation these coordinate systems are indentified with “IAU”

prefix, since their orientation is determined by International

Astronomical Union models. Dealing with Earth, the body - fixed

reference frame is the Earth Centered Earth Fixed (ECEF),

commonly defined in SPICE system as “IAU_EARTH”. This is a

rotating frame centered in the mass center of the Earth, hence the

name Earth-Centered. The z-axis is parallel to the Earth rotational

axis pointing towards North. The x-axis intersect the sphere of the

Earth at the 0° latitude, 0° longitude. This means that the ECEF

rotates with the Earth around its z-axis. Therefore, coordinates of a

point fixed on the surface don’t change, hence the name Earth-Fixed.

The y-axis completes the right-handed frame (figure 1.6).

Figure 1.6: Earth Centered Earth Fixed Reference Frame. [11]

Chapter I

20

Instrument – fixed frames are tied with a specified instrument and

are defined by the time – varying orientation of the instrument (or

spacecraft).

Aberration Corrections

To determine accurately in which direction a remote sensing

instrument must be pointed, or in which direction an antenna must be

pointed to transmit a signal to a specified target, aberration

corrections are needed. Within SPICE system, aberration corrections

are adjustments made to accurately reflect the apparent state of a

target body as seen from a specified observer at a specified time.

Infact, in a pointing problem, for example, the instrument must point

the apparent position of the target and not the real one at observation

time. The real state is called “geometric” state. SPICE supports two

aberration corrections: light time (called also planetary aberration)

and stellar aberration.

Light time is the one-way light time between the position of target

and the observer. Light time aberration correction is made

determining where the target is when photons have been emitted.

Light time correction only depends on motion between target and

Solar System Barycentre (SSB), and it doesn’t depend on velocity

between observer relative to SSB. Figure 1.7 shown clearly light

time aberration phenomenon.

Chapter I

21

Figure 1.7: Light Time Aberration phenomenon [11]. At time ET, the observer’s camera records photons

emitted from the target at time ET-LT. The camera sees the target's position and orientation at ET-LT.

Also observer velocity affects apparent target position: photons

velocity relative to the observer is the difference between their

velocity and observer velocity, always respect to SSB. This

phenomenon is named stellar aberration and it doesn’t depend on

target velocity. Figure 1.8 shown clearly stellar aberration .

Figure 1.8: Stellar Aberration phenomenon [11]. At time ET, the observer’s camera records photons

emitted from the target at time ET-LT. The vector from the observer at ET to the location of the target at

ET-LT is displaced by a physical phenomenon called stellar aberration. The displaced vector yields the

apparent position of the target.

According to application and usage, CSPICE routines allows to

correct these aberrations.

Chapter I

22

Some applicative tags are:

1. NONE: routines return the geometrical target state, in other words

without corrections;

2. LT: light time corrections applied;

3. LT+S: light time and stellar aberration corrections are both applied.

4. Introduction to MICE

MICE operates as an extension to the MATLAB environment. This

environment includes an intrinsic capability to use external routines.

MICE uses the MATLAB external interface functionality (MEX) to

provide MATLAB users access to selected CSPICE routines from

within MATLAB. A user need only install the interface library in

order to take advantage of SPICE utilities. The MICE library

contains the MATLAB callable C interface routines that wrap a

subset of CSPICE wrapper calls. The wrapper files, named

“cspice_*.m” and “mice_*.m”, provide the MATLAB calls to the

interface functions. The wrappers include a header section describing

the function call, inputs-outputs (I/O) and examples, displayable by

the MATLAB help command. These routines are black boxes, the

algorithm existing behind routines is not visible and they are for

NAIF staff use only. To make kernels available to SPACE programs,

user has to load them. User can use the FURNSH routine to load all

kernels-text and binary with the command:

>>cspice_furnsh (‘name.ext’)

Chapter I

23

It has to be noted that problems might raise if more than one kernel

is loaded by the user.

Kernels are loaded into MATLAB session not into MATLAB

scripts. This means that loaded kernels remain “active” throughout

the whole MATLAB session. If there is only one script in the

MATLAB session, there is no problem. On the other hand, some

kernel data may be available and used to a script even though not

intended to be so, driving to incorrect results. To bypass this problem

there are two approaches:

1. include a call to cspice_unload for each kernel loaded using

cspice_furnsh or include a call to cspice_kclear to remove all kernel

data from the kernel pool loaded using cspice_furnsh;

2. load all needed kernels at the beginning of the session, paying

careful attention to the files loaded and loading order. So user can

create a filenames-list called “meta-kernel” and load the meta-kernel

using FURNSH.

>>cspice_furnsh (‘mykernels.furnsh’)

This is a sample meta-kernel used to load a collection of kernels:

 KPL/MK
 \begindata

PATH_VALUES = (‘/corista/mice/kernels’)
PATH_SYMBOLS = (‘KERNELS’)
KERNELS_TO_LOAD= (
 ‘$KERNELS/leapsecond.tls’,
 ‘$KERNELS/sclk.tsc’,
 ‘SKERNELS/de421.bsp’)

The number of kernels that may be loaded at any time is large but

limited (max 1000 for binary kernels and 1300 for all kernels). In the

Chapter I

24

following a detailed description of an applicative example is

provided.

Use of MICE requires both the “lib” and the mice “src” directories

existing in the MATLAB search path:

>>addpath (‘C: \corista\mice\lib\’)
>>addpath (‘C: \corista\mice\src\mice’)

To ensure a proper setup, execute the command

>>which mice

MATLAB should return the path to the mice.dll file. Writing

>>cspice_tkvrsn(‘toolkit’)

the command causes MATLAB to display the CSPICE library

version (N0062).

MATLAB views all calls to MEX library as functions, that is a call

as the form

 output = name(inputs)

While for multiple arguments on output:

 [output1, output2,…] = name (inputs)

This is a sample model to convert between several time system and

time formats, built step by step. Through the cspice index, we learn

the two routines of interest are cspice_ str2et and cspice_ et2utc.

cspice_ str2et converts a string representing an epoch to a double

precision value representing the number of TDB seconds past the

J2000 epoch corresponding to the input epoch.

Chapter I

25

 GIVEN I/O DESCRIPTION
--------- --- ----------------------------------
 str I time string

 et O double precision number of TDB
 seconds past the J2000 epoch that
 corresponds to the input 'str'

cspice_et2utc converts an input time from ephemeris seconds past

J2000 to Calendar, Day-of-Year, or Julian Date format, UTC.

 GIVEN I/O DESCRIPTION
--------- --- ----------------------------------
 et I double precision array of
 ephemeris time
 format I format flag describing the output
 time string
 prec I number of decimal of precision
 utcs O output string

Format flag are:

 'C' Calendar format, UTC
 ‘D' Day-of-Year format, UTC
 'J' Julian Date format, UTC
 'ISOC' ISO Calendar format, UTC
 'ISOD' ISO Day-of-Year format, UTC

Building the program as an *.m file:

%***
%****** This program converts UTC time format in: ******
%****** - Et format ******
%****** - Calendar format, UTC ******
%****** - Day-of-Year format, UTC ******
%****** - Julian Date format, UTC ******
%***
%load leapseconds file
cspice_furnsh ('C:\Corista\mice\lib\naif0009.tls');
%input
time = input('Enter time string => ','s');
%conversion UTC==>ET
et = cspice_str2et(time);
%conversion ET==>UTC "C"

Chapter I

26

UTCC = cspice_et2utc(et, 'C', 6);
%conversion ET==>UTC "D"
UTCD = cspice_et2utc(et , 'D', 6);
%conversion ET==>UTC "J"
UTCJ = cspice_et2utc(et , 'J', 6);
%output
fprintf('ET==> %11.6f\n',et);
fprintf('Calendar format ==> %s\n', UTCC);
fprintf('Day-Of-Year format ==> %s\n', UTCD);
fprintf('Julian Date format==> %s\n', UTCJ);

5. SPICE Ephemeris Subsystem SPK

An SPK file contains ephemeris data for "ephemeris objects”.

Spacecrafts, planets, satellites, comets and asteroids are the obvious

kinds of ephemeris objects, but many other possibilities exist, such

as:

• a rover on the surface of a body

• a camera on top of a mast on a lander

• a transmitter cone on a spacecraft

• a deep space communications antenna on the earth

• the center of mass of a planet/satellite system (planet barycenter)

• the center of mass of our solar system (solar system barycenter)

All possibilities are summarised in the following picture (fig. 1.9)

Chapter I

27

Figure 1.9: Example of ephemeris objects. [11]

Inside an SPK file ephemeris objects come in pairs: a “body” and a

“center of motion” so that the ephemeris is given for the body

moving relative to the center of motion.

For the position component, the vector points TO the body FROM

the center of motion. In the case of multiple pairs, reading an SPK

file, user has to specify which ephemeris object is the “target” and

which is the “observer”. Other used conventions are:

• the position data point from the “observer” to the “target”;

• the velocity is of the “target” relative to the “observer”.(Fig.1.10)

Figure1.10: Example of conventions. [11]

Chapter I

28

An important parameter concerning with time is the “coverage” or

“time coverage”. Coverage is the time period over which an SPK file

provides data for an ephemeris object.

Since SPK kernels are binary files, reading informations and data

inside is not easy, so that it’s impossible to open such files with a

traditional text editor. NAIF provides making available several

utility program (including in the toolkit) to bypass this problem. The

program BRIEF, for example, allows users to read general

informations and time coverage of SPK kernels. But BRIEF is not

the only one. Launching SPACIT and choosing the option “S”

(summarize binary file), the program displays the “descriptor” of an

SPK kernel.

Concerning with binary files, porting kernels may cause several

problems. Data formats vary across platforms, so data files created

on a platform may not be useful on another platform (called

“incompatible” platforms): different platforms use different bit

patterns to represent numbers (and possibly characters). This

problem not only affects binary data formats but also text formats:

different platforms may use different mechanisms to represent

“lines” in text files. Platforms have “compatible” binary or text

formats if they use the same binary or text data representations.

NAIF with toolkit utility programs solves the porting problem.

SPACE toxfr.exe and spacit.exe may be used to convert binary data

format kernels in a “transfer format”. Later on, after porting,

spacit.exe and tobin.exe allow to reconvert the transfer format file in

a binary data format file, available and ready-to-use on the new

platform.

Chapter I

29

SPK kernels can be downloaded from:

ftp://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk .

There are four sub directories concerning with comets, planets,

satellites, and asteroids. Our attention is focused on the SPK planets

kernel: “de421.bsp”, realised on 31st March 2008.

To extract position or state vectors of ephemeris objects from an

SPK file, usually two kinds of SPICE kernels are needed:

• SPK, ephemeris kernels, sometimes just one is needed;

• LSK, leapseconds kernel, used to convert between Coordinated

Universal Time (UTC) and Ephemeris Time (ET); usually needed

since most people work with UTC time.

To retrieve state vectors of an ephemeris object, cspice_spkezr may

be used. This routine returns the state (position and velocity) of a

target body relative to an observing body, optionally corrected for

light time (planetary aberration) and stellar aberration. The call is:

[state, lt] = cspice_spkezr (targ, et, ref, abcorr, obs)

Inputs:

• targ, obs: characters names or NAIF IDs for the target body and the

observer one, in other words the point and the origin of the state

vector (Cartesian position and velocity) to be returned;

• et: the time at the observer at which the state vector is to be

computed in Ephemeris Time;

• ref: the scalar name of the reference frame relative to which the

output state vector should be expressed;

• abcorr: kind of aberration correction(s) to be applied.

Outputs:

Chapter I

30

• state: Cartesian state vector with six components: three for position

and three for velocity of the target respect to the observer;

• lt: the one-way light time between the position of target (optionally

aberration corrected) and the geometric position of the observer at

the specific epoch.

Building the program as an *.m file:

%***
%****** This program retrieves state vectors ******
%****** (position and velocity) of a target body ******
%****** relative to an observing body optionally ******
%****** corrected for light time at a specific epoch ******
%***
%initial conditions
cspice_kclear
%load leapseconds file and SPK kernel
cspice_furnsh('C:\Corista\mice\lib\naif0009.tls');
cspice_furnsh('C:\Corista\mice\lib\de421.bsp');
%input
time= input ('Enter the time string => ','s');
targ= input ('Enter the target body => ','s');
obs= input ('Enter the observer body => ','s');
frame= input ('Enter the reference frame => ','s');
abcorr= input ('Enter the aberration corrections => ','s');
%time conversion between string => ET
et = cspice_str2et(time);
%compute state vectors
[pos,ltime]=cspice_spkezr(targ, et, frame, abcorr, obs);
%outputs
fprintf('Position (km) x : %11.6f\n', pos(1));
fprintf('Position (km) y : %11.6f\n', pos(2));
fprintf('Position (km) z : %11.6f\n', pos(3));
fprintf('Velocity x (km/s) : %11.6f\n', pos(4));
fprintf('Velocity y (km/s) : %11.6f\n', pos(5));
fprintf('Velocity z (km/s) : %11.6f\n', pos(6));
fprintf('ET : %11.6f\n', et)
fprintf('Light Time : %11.6f\n', ltime)

The planetary and lunar ephemeris DE 421 represents the “current

best estimates” of the orbits of the Moon and planets. The lunar orbit

is currently known to sub-meter accuracy though fitting lunar laser

ranging data. The orbits of Venus, Earth, and Mars are known to

Chapter I

31

sub-kilometer accuracy. Because of perturbation of the orbit of Mars

by asteroids, frequent updates are needed to maintain the current

accuracy into the future decade. The orbits of Earth and Mars are

continually improved through measurements of spacecraft in orbit

about Mars. Mercury’s orbit is determined to an accuracy of several

kilometers by radar ranging. The orbits of Jupiter and Saturn are

determined to accuracies of tens of kilometers as a result of

spacecraft tracking and modern ground-based astrometry. The orbits

of Uranus, Neptune, and Pluto are not as well determined.

The axes of ephemeris are oriented with respect to International

Celestial Reference Frame (ICFR). For DE 421 the positions of the

Moon and planets were integrated using a n-body parameterized

post-Newtonian metric (PPN). The PPN parameters γ and β have

been set to 1, their values in general relativity. The oblateness of the

Sun has been modelled with J2 set to 2.0x10-7. Along with the Earth-

Moon mass ratio, the mass parameter GM for the Sun, which is by

convention a fixed value in units of AU3/day2, was estimated in units

of km3/s2 by solving for the AU in km in the development of DE

421. The mass parameter of the Earth-Moon system was held fixed

to a previous LLR-only estimate. The mass parameters for the other

planets (planetary systems for planets with natural satellites) were

taken from published values derived from spacecraft tracking data.

For the Earth's gravity field, J3 and J4 were taken from the GGM02C

gravity field and the equatorial Earth radius used with gravity was

set to 6378.1363 km. The J2 coefficient was based on the GGM02C

"tide free" value, but the J2 value was adjusted with different Love

numbers. Love numbers, introduced by A.E.H. Love, determine the

ratio of the height of a body tide to the static marine tide and the

Chapter I

32

ratio of additional potential produced by the redistribution of mass to

the displacement of the crust to that of the equilibrium fluid tide.

It’s proper to spend few words about GGM02. GGM02S gravity

model was estimated with 363 days (spanning form April 2002 to

March 2003) of GRACE K-band range rate, attitude and

accelerometric data. No satellite information, or surface gravity

information, or other a priori conditioning were applied in generating

this solution. GGM02C, a high resolution global gravity model,

combines GGM02S with terrestrial gravity information (surface

gravity and mean sea surface). The Earth tides came from the IERS

conventions and the ocean tides were based on FES2004 (Finite

Element Solution tidal atlates).

Chapter II

33

 CHAPTER II: Kernels generation

From NAIF server are available kernels for several missions. SPICE

is used essentially for all NASA solar system exploration projects.

SPICE kernels archived by NAIF node deals both with passed

(VOYAGER, PHOBOS,…), current (CASSINI, MESSENGER,…)

and future missions (MSL, JUNO, …). Limited SPICE kernels may

be created (or are being) for some past missions: for example for

some missions only SPK is available. SPICE is also used in support

of some space physics and astrophysics missions (HST,…), on some

non-NASA missions (HAYABUSA, ROSETTA,…).

Missions (and relative kernels) archived and available on NAIF

server are listed in Annex I.

NAIF also provides tools to generate your own kernels taking high

advantage from SPICE routine. According to their requirements,

users can create the kernels they need for their computations and

analysis. Even thought users can create kernels for their needs,

NAIF’s tools don’t allow to create each type of kernels: some tools

have limitations and some data indicating how to create a complete

set of kernels are not available.

This work is focused on creating kernels in the scenario of Post-EPS

mission, in particular retrieving Sun and Moon view angle with

respect to the spacecraft and the coverage analysis.

Chapter II

34

1. Post–EPS mission

EUMETSAT Polar System (EPS) mission is the first European

polar orbiting operational meteorological satellite system and it’s

part of the Global Operational Satellite Observation System (GOS),

as shown in fig. 2.1.

Figure 2.1: EPS contributes to the GOS. [5]

EPS is the European contribution to a joint satellite system between

Europe and United States, called Initial Joint Polar-Orbiting

Operational Satellite System (IJPS). This is an agreement between

the European Organisation for the Exploration of Meteorological

Satellites (EUMETSAT) and the National Oceanic an Atmospheric

Administration (NOAA). The EPS programme consists of a series of

three Meteorological Operational (MetOp) satellites, operative for

more than 14 years from 2006. MetOp-2, the first satellite, was

Chapter II

35

launched on 19 October 2006 from the Baikonur cosmodrome in

Kazakhstan with a Soyuz launcher. Once in orbit the satellites are

ordered alphabetically, so the first satellite that was launched is

called MetOp-A. Each satellite has a nominal lifetime in orbit of 5

years. This programme has brought a new era in the observations of

Earth’s weather, climate and environment, and it will significantly

improve operational meteorology, in particular Numerical Weather

Prediction (NWP). The data carried by MeteOp can be assimilated

directly into NWP models to compute forecasts ranging from a few

hours up to ten days ahead. Measurements from microwave

radiometers on board Metop provide NWP models that retrieve very

important informations about global atmospheric temperature an

humidity structure, with a high vertical and horizontal resolution.

Post- EPS mission is a mandatory programme which is the

extension of EPS observation missions, focusing in particular on

NWP and climate monitoring starting in 2018 for at least 15 years

(figure 2.2).

Figure 2.2: Post-EPS mission plan. [13]

Post-EPS orbits are Sun-Synchronous Orbit (SSO) with the orbit

geometry shown in figure 2.3:

Chapter II

36

• Altitude, defined as (Mean Semi-Major Axis – Earth equatorial

radius): km 720;

• SSO at 9:30 LTDN;

• Angle between Earth-Sun direction (at equinox) and lines of

node:37.5°

• Angle Earth-Sun direction-orbit plane: 38.7° (max), 27.7° (min),

32.8° (mean).

Figure 2.3: Post-EPS orbit geometry. [13]

Sun-synchronous orbits are geocentric orbits where a satellite passes

over any given point of the Earth's surface at the same local time.

The surface illumination angle will be nearly the same every time.

This means that line of nodes and Sun projection onto the equatorial

plane have the same precession rates, i.e. angle between the Earth-

Sun direction equatorial projection and the line of nodes is constant.

For SSO, combining altitude, inclination and eccentricity the

following equations can be written:

Chapter II

37

Θ=Ω α&&),,(iea

Θ=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

− αμ
&i

aea
RJ cos

)1(2
3

322

Where:

• Ω& is the line of nodes precession rates;

• α& is the sun precession rates;

• J2 is the is the second zonal harmonic coefficient (Earth oblateness);

• R is the Earth equatorial radius;

• a is the semi-major orbit axis;

• e is the eccentricity;

• i is the orbital inclination;

• μ is the gravitational parameter.

2. Making kernels

In order to compute illumination angles of the Post-EPS satellite and

analyze the coverage, the user needs an SPK containing the

spacecraft ephemeris to retrieve time by time the state vector. Then,

with respect to a fixed spacecraft reference system, the illumination

angles and the coverage can be easily computed.

The user must provide the SPICE system the required kernels to

make the analysis and gain from SPICE routines. The figure 2.4

shows a logical overview of the analysis developed in this chapter.

Chapter II

38

Figure 2.4: Logical summary of kernels generation. SPICE routines requires several kernels: SPICE
kernels (in green) provided by SPICE itself, text kernels and setup file (in blue) , and satellite’s
ephemeredes (in black) created in order to conduce the analysis.

Four main steps are needed:

• create the SPK;

• create a FK;

• create an IK;

• finally write the MICE program.

In the following these four step will be described in detail.

Making an SPK file

Before creating an SPK, it is useful to understand and to know the

structure of an SPK file. An SPK file is made up of one or more data

“segments” and a “comment” area (figure 2.5).

Chapter II

39

Fig. 2.5: Logical Organization of an SPK file. [11]

Each segment contains ephemeris data sufficient to compute the

geometric state (position and velocity) of one solar system body (the

target) with respect to another (the center) at any epoch throughout

some finite interval of time. The space body may be a spacecraft, a

planet or planet barycenter, a satellite, a comet, an asteroid, a

tracking station, a roving vehicle, as well as an arbitrary point for

which an ephemeris has been calculated. Each body in the solar

system is identified by a unique integer code. The states computed

from the ephemeris data in a segment must be referenced to a single,

recognized reference frame.

The summary for each segment (figure 2.4), called “descriptor”,

retrieves:

• the segment’s name;

• the NAIF integer code for the target;

• the NAIF integer code for the center;

Chapter II

40

• the NAIF integer code for the reference frame;

• the integer code for the representation (type of ephemeris data);

• time coverage;

The fifth integer component of the descriptor - the code for the

representation, or “data type” - is the key to the SPK format: it

describes how ephemeris data are represented inside the SPK file.

Each type has certain properties that may promote or limit its

usefulness in a particular application. SPICE currently support 18

data types:

1. Modified Difference Arrays (MDA).

These are primarily used for spacecraft ephemeredes. Each segment

containing Modified Difference Arrays contains an arbitrary

number of logical records. Each record contains difference line

coefficients valid up to a final epoch. A given function contains the

algorithm used to construct a state from a particular record and

epoch. Each one of these records contains 71 double precision

numbers.

1. Chebyshev polynomials (position only).

These are sets of coefficients for the x, y, and z components

of the body position. The velocity of the body is obtained by

differentiation. This data type is normally used for planet

barycenters, and for satellites whose orbits are integrated.

2. Chebyshev polynomials (position and velocity).

 These are sets of coefficients for the x, y, and z components

of the body position, and for the corresponding components of

the velocity. This data type is normally used for satellites

whose orbits are computed directly from theories.

3. Reserved for future use.

Chapter II

41

4. Discrete states (two body propagation).

This data type contains discrete state vectors. A state is

obtained for a specified epoch by propagating the state vectors

to that epoch according to the laws of two body motion and then

taking a weighted average of the resulting states.

5. Reserved for future use.

6. Reserved for future use.

7. Equally spaced discrete states (Lagrange interpolation).

This data type contains discrete state vectors whose time tags

are separated by a constant step size. A state is obtained for a

specified epoch by finding a set of states “centered” at that

epoch and using Lagrange interpolation on each component of the

states.

8. Unequally spaced discrete states (Lagrange interpolation).

This data type contains discrete state vectors whose time tags may be

unequally spaced. A state is obtained for a specified epoch by

finding a set of states “centered” at that epoch and using Lagrange

interpolation on each component of the states.

9. Space Command Two-line Elements (Short Period Orbits).

This data type contains Space Command two-line element

representations for objects in Earth orbit.

10. Reserved for future use.

11. Hermite Interpolation Uniform Spacing.

12. Hermite Interpolation Non-uniform Spacing.

13. Chebyshev polynomials non-uniform spacing.

This data type contains Chebyshev polynomial coefficients for

the position and velocity of an object. Unlike SPK Types 2 and

Chapter II

42

3, the time intervals to which polynomial coefficient sets

apply do not have uniform duration.

14. Precessing conic propagation.

This data type allows for first order precession of the line of

apsides and regression of the line of nodes due to the effects

of the J2 coefficient in the harmonic expansion of the

gravitational potential of an oblate spheroid.

15. Reserved for future use.

16. Equinoctial Elements.

This data type represents the motion of an object about another

using equinoctial elements. Unlike Type 15, the mean motion,

regression of the nodes and precession of the line of apsides are not

derived from the gravitational properties of the central body, but are

empirical values.

17. Hermite/Lagrange Interpolation.

After the description of the structure of an SPK, it’s now possible to

analyze the method available for making an SPK file.

NAIF provides a conversion utility (MKSPK.exe) that takes a data

file produced by an orbital propagator as input and gives the binary

files (figure 2.6).

Fig. 2.6: Logical diagram for making SPK. [11]

Chapter II

43

As shown in figure 2.5, a setup file and an ASCII file of ephemeris

data are required (a comment file is optional). MKSPK doesn’t allow

to create SPK files in whatever data type. The needed ephemeris data

representation are:

• table of Cartesian state vectors;

• one or more sets of Space Command two-line;

• table of conic elements;

• one or more sets of equinoctial elements.

The possible SPK data type produced are 5, 8, 9, 10, 12, 13, 15, 17

(see list above).

The setup file (figure 2.5) provides the conversion utility to read and

storage the ephemeris data file, describing the observer, the target,

the reference frame, the type of input and output data, how

ephemeredes are placed in the data file. The format of this file must

be conform to the SPICE text kernel specification. This means that

the input values must be assigned to keyword variables through the

format:

KEYWORD = VALUE

The names of keywords must be strictly uppercase while the value of

keywords don’t matter if it’s upper, lower or mixed case. Each

assignment is restricted to a single line and sets of this assignment

must be enclosed between

\begindata
\begintext

Comments can be written before \begindata and after
\begintext.

Chapter II

44

The assignments required for the setup file are listed in Annex II.

Compiled the setup file, an ephemeris data file is needed. The

ephemeris data are produced by an orbital propagator (not provided

by NAIF). The orbital propagator used in this thesis is a trajectory

propagator, which takes advantage of the power of NAIF library and

the fast and the high level computation of SPICE routines. The

algorithm used take into account the Earth oblateness (J2 term) in

scenario of Post-EPS mission which satellites lies on LEO orbits.

The propagator considers that the true anomaly at the initial

propagation time is zero and gives to the user the possibility to set.

Fixed, the set of orbital parameters, the user can choose the initial

date of propagation, the days of propagation and the time step (figure

2.7).

Figure 2.7: Orbital propagator user interface.

Chapter II

45

The software, using SPICE routines, converts the time string in

Ephemeris Time, and computes the orbit inclination for a Sun-

Synchronous Orbit using the formula considered above. Beside this

other outputs of the orbital propagator are: the mean anomaly, M,

and the eccentric anomaly, E, solving the transcendent Kepler

equation using the Newton-Raphson iteration method.

The equation that links mean and eccentric anomaly is:

EeETtnM sin)(−=−=

where n is defined as 3an μ= called “mean motion”. The

relationship between eccentric anomaly and true anomaly ν and

radius r is:

1cos
coscos

−
−

=
Ee

Eeν

E
r

ea sin1sin
2−

=ν

)cos1(Eear −=

Retrieved radius and true anomaly, the components of position and

velocity of the satellite for the considered time frame are computed

in ECI reference. Considering Earth rotation and the related

transformation matrix, the algorithm converts state components from

ECI to ECEF reference. The compiled program file (*.m file) of the

orbital propagator is reported in Annex III.

Ephemeredes in double precision are printed in a text file. The

orbital propagator creates a time ordered sets of states, where each

Chapter II

46

ephemeris epoch lies one on a single line and components are

separated by TAB: the first value is the epoch in Ephemeris seconds,

followed by three position components and three velocity

components. A sample of the ephemeris data file is the following:

 ephemeris [et,state].Tar: -313 Obs: EARTH
287712066.19 7098.14 0.00 0.00 0.00 -1.08 7.42
287712076.19 7097.73 -15.95 74.16 -0.08 -1.08 7.42
287712086.19 7096.52 -31.91 148.30 -0.16 -1.08 7.41

For a more comfortable visualization according to this page format,

the TAB has been replaced with SPACE and the values has been cut

at the second decimal number.

Created the ASCII ephemeris data file, the user can compile the

setup file to provide the MKSPK conversion program to read in the

right way the ephemeredes and give the binary SPK files. Assumed

that the considered satellite ID is “-313” (a fictitious number chosen

by user), the setup file will be:

\begindata
INPUT_DATA_FILE = 'ephemerisdata.txt'
OUTPUT_SPK_FILE = 'eph.bsp'
INPUT_DATA_TYPE = 'STATES'
OUTPUT_SPK_TYPE = 5
OBJECT_ID = -313
CENTER_NAME = 'EARTH'
REF_FRAME_NAME = 'IAU_EARTH'
PRODUCER_ID = 'SALVATORE TUOSTO'
DATA_ORDER = 'EPOCH X Y Z VX VY VZ'
INPUT_DATA_UNITS = ('ANGLES=DEGREES'

 'DISTANCES=km')
DATA_DELIMITER = 'TAB'
LINES_PER_RECORD = 1
IGNORE_FIRST_LINE = 2
LEAPSECONDS_FILE = 'naif0009.tls'
PCK_FILE = 'Gravity.tpc'

Chapter II

47

TIME_WRAPPER = '# ETSECONDS'
SEGMENT_ID = 'PROVA_SPK_MIO_SAT'
APPEND_TO_OUTPUT = 'YES'
\begintext

The required files are now available and ready to be given in input to

MKSPK conversion program.

With the created SPK file, user can retrieve position and velocity of

the satellite at any epoch enclosing in time coverage using SPICE

routines analyzed in the past chapter (Ch. 1.4). The satellite’s SPK

must be loaded as a generic SPK file with the FURNSH routine.

Making an FK (Frame Kernel) file

For pointing problem, or simply to compute positions of several

celestial bodies with respect to a spacecraft, a rover, an orbiter, a

specified instrument, defining a body reference frame is a crucial

problem. A number of reference frames are already defined in

SPICE system, but sometimes a specific problem can require the

creation of a new reference frame. In order to define a new reference

frame, its orientation and position with respect an existing reference

frame have to be computed: SPICE allows also to compute

transformation between neighboring reference frame.

To create a Frame Kernel (FK file), the concept of a frame class is

needed. The method by which a frame is related to some other frame

is a function of the “class” of the frame. There are five classes:

1. Inertial frame.

These frames don’t rotate with respect to the star background. Here,

Newton’s laws can be applied. The class number associated with

inertial frame is 1.

Chapter II

48

2. Body-Fixed (PCK) frames.

The orientation of these frames with respect to inertial frames is

supplied in PCK files. The class number associated with PCK frames

is 2.

3. CK frames.

The orientation of these frames with respect to some other reference

frame is supplied via a C-kernel. A CK file holds orientation data or

a moving structure on the spacecraft. C-kernels use spacecraft clock,

so user must load a SCLK file appropriate for the C-kernel. The class

number associated with CK frames is 3.

4. Fixed offset frames.

These frames have a constant orientation with respect to some

reference frame an this orientation is included in a SPICE text

kernel. That’s why this class of frame is also called Text Kernel

(TK). The class number associated with TK frames is 4.

5. Dynamic frames.

These frames time-dependent, and they are defined via parameters or

formulas specified in a text frame kernel. The class number

associated with dynamic frames is 5.

 Dynamic frames are time dependent so they are ideal to describe

orbital frames of any ephemeris object, also because the frames of

the fifth class are easy to define and enables SPICE system to use

conveniently a wide variety of frame that are not “built-in” to

SPICE. The only currently frame definition style supported by

dynamic frames subsystem is the parameterized one. A

“parameterized dynamic frame” is defined by a formula

implemented in SPICE code and having selectable parameters set via

a frame kernel. The parameterized dynamic frame “family” indicates

Chapter II

49

the mathematical formula the frame is defined by. There are five

parameterized dynamic frame families:

• Two-vector frames: these reference frames are defined by two

vectors. The first vector is parallel to one axis of the frame; the

component of the second vector orthogonal to the first is parallel to

another axis of the frame, and the cross product of the two vectors is

parallel to the remaining axis.

• Mean equator and equinox of date frames: these use mathematical

precession models to define orientation of a body's equatorial plane

and location of the frame's x-axis. Currently these frames are

supported only for the earth.

• True equator and equinox of date frames: these use mathematical

 precession and nutation models to define orientation of a body's

equatorial plane and location of the frame's x-axis. Currently these

frames are supported only for the earth.

• Mean ecliptic and equinox of date frames: these use mathematical

precession and mean obliquity models to define orientation of a

body's orbital plane and location of the frame's x-axis. Currently

these frames are supported only for the earth.

• Euler frames: polynomial coefficients, a reference epoch, and an

axis sequence are used to specify time-dependent Euler angles giving

the orientation of the frame relative to a second, specified frame as a

function of time.

In order to create a reference frame fixed to a spacecraft it’s

comfortable to adopt the two-vectors frame family: user can choose

how to orient spacecraft frame with respect to existing vectors in the

easiest and most useful way.

Chapter II

50

Two-vector frames use two user-specified, non-parallel vectors to

define the mutually orthogonal axes of a right-handed reference

frame. In these frames, one vector is parallel to a specified axis of

the reference frame: this vector is called the “primary vector”. The

other one, called the “secondary vector” defines another axis: the

component of the secondary vector orthogonal to the primary vector

is parallel to a specified axis of the reference frame. Each suitable

vector may be:

• position vector, defined by the position of one ephemeris object

respect to another;

• target near point vector, defined by as the vector from an observer to

the nearest point on a specified extended target body to that

observer;

• velocity vector, defined by the velocity of an ephemeris target object

relative to an observing ephemeris object;

• constant vector, defined as a vector constant in a frame specified by

the kernel creator.

Figure 2.8 shows graphically how to use and define two vectors

frames in an applicative example.

Chapter II

51

Figure 2.8: Two vectors frame. The primary vector (the red one) is defined by the position of the target
body (the small one) respect to the observer body. The secondary vector (the blue one) is defined as the
velocity of the target body. The X-axis is associated with the primary vector, the Y-axis with the
normalized component of the secondary vector orthogonal to primary vector and the Z-axis completes
the right-handed frame .[3]

 Finally to define a new reference frame, user have to create a frame

kernel. The format of this file must be conform to the SPICE text

kernel specification, in other words it has to follow the same rules of

SPK setup file viewed above. The assignments to define a two

vectors frame kernels are reported in Annex IV.

The new reference frame associated with the considered satellite

(-313) is “Donald” (a fictitious name), and its ID code is 961934 (a

fictitious number). It is a two vectors reference frame, where the

primary vector is the position vector of the satellite respect to the

Earth, and the secondary vector is the satellite velocity respect to the

Earth. The frame kernel will be:

\begindata

FRAME_DONALD = 961934
FRAME_961934_NAME = 'DONALD'
FRAME_961934_CLASS = 5
FRAME_961934_CLASS_ID = 961934
FRAME_961934_CENTER = -313
FRAME_961934_RELATIVE = 'IAU_EARTH'
FRAME_961934_DEF_STYLE = 'PARAMETERIZED'
FRAME_961934_FAMILY = 'TWO-VECTOR'
FRAME_961934_PRI_AXIS = '-Z'

Chapter II

52

FRAME_961934_PRI_VECTOR_DEF =
 'OBSERVER_TARGET_POSITION'
FRAME_961934_PRI_OBSERVER = 'EARTH'
FRAME_961934_PRI_TARGET = -313
FRAME_961934_PRI_ABCORR = 'NONE'
FRAME_961934_PRI_FRAME = 'IAU_EARTH'
FRAME_961934_SEC_AXIS = 'Y'
FRAME_961934_SEC_VECTOR_DEF =

 'OBSERVER_TARGET_VELOCITY'
FRAME_961934_SEC_OBSERVER = 'EARTH'
FRAME_961934_SEC_TARGET = -313
FRAME_961934_SEC_ABCORR = 'NONE'
FRAME_961934_SEC_FRAME = 'IAU_EARTH'

\begintext

Defined spacecraft-fixed frame, for pointing problems the locations

and the orientations of antennas are required: SPICE system “needs

to know” how antennas are oriented or rotating with respect with the

reference frame fixed to the spacecraft. A comfortable way to

operate with this kind of problems is to create a reference frame for

each antenna. The reference frames we need to define antennas’

orientations belongs to the forth class: these antenna frames have a

constant orientation with respect to the spacecraft reference frame.

Hence for our scope we need to define a new reference frame (with a

new name and a new frame ID) with a text kernel. Since the rotation

of the antenna frame (TK frame in general) relative to the spacecraft

frame (RELATIVE frame in general) is fixed (time invariant),

rotation data can be provided by:

• 3x3 matrix , M, that converts vectors from the antenna frame to the

spacecraft frame : VDONALD = M * Vantenna ;

• a set of 3 Euler angles and axes that can be used to produced M;

• a SPICE-style quaternion representing M.

Chapter II

53

The first five kernel pool variables required for TK frame

specifications are the same as the Dynamic Frame defined before.

For TK frames the assignments are described in Annex IV.

In order to avoid mistakes, in the following an analysis of Euler

angles is done. Figure 2.9 shows Roll-Pitch-Yow convention for

Euler angles.

Figure 2.9: Roll-Pitch-Yow convention.

If M is the matrix that converts vectors from the RELATIVE frame

to the TK frame, the angles and the axis must satisfy the relationship:

M = [Φ]axis 3[θ]axis 2[ψ]axis 1

where

1][
cossin0
sincos0

001
ψ

ψψ
ψψ =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

2][
cos0sin

010
sin0cos

θ
θθ

θθ
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −

Chapter II

54

3][
100
0cossin
0sincos

φφφ
φφ

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

This method is particularly suitable for defining antennas reference

frame: knowing how the antenna is oriented respect to the spacecraft

frame through Euler angles, user can easily defined the

corresponding reference frame. In this thesis we are interested to

analyzed the orientation of Sun and Moon respect to the two

antennas of the considered satellite (-313): the Main Antenna and the

Sky Horn Antenna on board Post-EPS satellite for radiometric

calibration purpose (as it will described in the next chapter).

Assumed that the Main Antenna frame’s name is MAIN_ANT, and

that frame’s matrix orientation is M=[0°]1[4°]2[0°]3, the TK is:

\begindata

FRAME_MAIN_ANT = 26786
FRAME_26786_NAME = 'MAIN_ANT'
FRAME_26786_CLASS = 4
FRAME_26786_CLASS_ID = 26786
FRAME_26786_CENTER = -313
TKFRAME_26786_RELATIVE = 'DONALD'

 TKFRAME_26786_SPEC = 'ANGLES'
TKFRAME_26786_ANGLES = (0,0,0)
TKFRAME_26786_AXES = (1,2,3)
TKFRAME_26786_UNITS = 'DEGREES'

\begintext

A similar file is required for the Sky Horn Antenna frame. Assumed

that its name is SKY_HORN and its matrix orientation is

M=[0°]1[180°]3[4°]2, the TK is :

Chapter II

55

\begindata
FRAME_SKY_HORN = 16208
FRAME_16208_NAME = 'SKY_HORN'
FRAME_16208_CLASS = 4
FRAME_16208_CLASS_ID = 16208
FRAME_16208_CENTER = -313
TKFRAME_16208_RELATIVE = 'DONALD'

 TKFRAME_16208_SPEC = 'ANGLES'
TKFRAME_16208_ANGLES = (0,180,0)
TKFRAME_16208_AXES = (1,2,3)
TKFRAME_16208_UNITS = 'DEGREES'

\begintext

Making an IK file

The Instrument Kernel (IK) is like a repository for instrument

specific informations that may be useful in SPICE context. An IK

always includes specifications for instruments’ field-of-view (FOV)

size, shape, orientation, beam features and so on. These kernels may

also include internal instrument timing parameters and other data

relating to SPICE computations and instrument geometric calibration

data. Instead, instrument mounting alignment data are specified in

mission’s frame kernels (FK).

The main roll of IK is the definition of FOV parameters: since Post-

EPS is a meteorological mission dealing with pointing problems, IK

is a key file for the mission. Since IK is a SPICE text kernel, the

format, the structure and the assignment rules are the typical of a text

kernel. To define univocally a field of view four parameters are

required:

• the shape;

• the boresight;

• the frame the boresight is defined in;

Chapter II

56

• the boundary vectors. These vector can be defined explicitly or

through the half angle extents of the FOV.

Figure 2.10 shows the definition of the mentioned parameters.

Figure 2.10: Elliptic FOV. Boundary vector can be provided either defining there components, (0,1,4) and
(2,0,4), or the half angles extents, 14.3° and 26.57°.[11]

For IK frames the required assignments are reported in Annex V.

Neither the boresight nor the reference vector has to be coaligned

with one of the FOV frame’s axis, but for convenience, each is

frequently defined to be along one of the FOV axes. Moreover

neither the boresight nor corner nor reference vector has to be a unit

vector, but frequently are so.

We have to create two instrument kernels, on for each antenna. Since

only the Main Antenna points towards the Earth, only one IK is

required to satisfy our pointing requests.

Assume that the Main Antenna (whose instrument ID is -283284)

has a circular shape with a spread of three degrees. The

corresponding IK is:

Chapter II

57

 \begindata

INS-283284_FOV_SHAPE = 'CIRCLE'
INS-283284_FOV_FRAME = 'MAIN_ANT'
INS-283284_BORESIGHT = (0.0 0.0 1.0)
INS-283284_FOV_CLASS_SPEC = 'ANGLES'
INS-283284_FOV_REF_VECTOR = (0.0 1.0 0.0)
INS-283284_FOV_REF_ANGLE = 5
INS-283284_FOV_ANGLE_UNITS = 'DEGREES'

\begintext

Chapter III

58

 CHAPTER III: SPICE application in Post-EPS

mission

This chapter is focused on the direct application of SPICE system in

scenario of Post-EPS mission in order to compute satellite’s position,

Moon and Sun illumination angles on the antennas, and coverage.

1. Satellite position

 Satellite’s position is retrieved directly from the satellite’s SPK that

has been described in the previous chapter (paragraph 2.2). To obtain

the state vectors of the satellite at a given time, cspice_spkpos may

be used. This routine returns the state (position and velocity) of a

target body relative to an observing body, optionally corrected for

light time (planetary aberration) and stellar aberration. The command

for the call is:

[state, lt] = cspice_spkpos (targ, et, ref, abcorr, obs)

The three components state vector is required to the SPICE routines

to compute the coordinates the user needs (figure 3.1).

Chapter III

59

Figure 3.1: Coordinates transformations. Kernels required are: SPICE kernels (in green) provided by
SPICE itself and kernels appositely created in order to conduce the analysis (in blue).

For example, in this work Post-EPS satellite’s coordinates have been

estimated on 11 March 2009 at 12:00:00 UTC (290044866.185526 s

ET).

In order to retrieve right ascension-declination coordinates (figure

3.2), cspice_recrad is used.

Figure 3.2: Right Ascension-Declination coordinates.[15]

The call is performed by means of the following command:

Chapter III

60

[range, ra, dec] = cspice_recrad (state)

At the given epoch satellite’s coordinates are:

range = 7098.14 km ra = 189.55 deg dec = 14.33 deg

To retrieve planetocentric coordinates (figure 3.3), cspice_reclat is

used.

Figure 3.3: Planetocentric coordinates.

The command for the call is:

[radius, lon, lat] = cspice_reclat (state)

At the given epoch satellite’s coordinates are:

range = 7098.14 km long = -170.45 deg lat = 14.33 deg

Iterating the process for a number of days of propagation, satellite’s

ground track can be created. The figure 3.4 shows the result obtained

for Post-EPS satellite’s ground track in one day of propagation.

Chapter III

61

Figure 3.4: Post-EPS Satellite’s ground track.

To retrieve planetographic coordinates, cspice_recpgr is used. The

call is performed by means of the command:

[lon, lat, al] = cspice_recpgr(body, state, re, f)

Where body is the name of the planet with which the planetographic

coordinate system is associated, re is its equatorial radius, and f is

the flattening coefficient defined by the equation:

equatorial

polarequatorial

radius
radiusradius

f
−

=

The longitude nominal range is 0≤ lon ≤2π, and the latitude nominal

range is -π/2≤ lat ≤ π/2. The figure 3.5 highlight the difference

between planetocentric and planetografic coordinate systems.

Chapter III

62

Figure 3.5: Difference between Planetocentric coordinates and Planetographic coordinates.
Planetocentric latitude of a point P is the angle between segment from origin to point P and x-y plane
(red arc in diagram). Planetograpfic latitude of a point P is the angle between x-y plane and extension of
ellipsoid normal vector N that connects x-y plane and P (blue arc in diagram). [11]

At the given epoch satellite’s coordinates are:

altitude = 721.31 km long = 189.55 deg lat = 14.41 deg

To retrieve planetodetic coordinates, cspice_recgeo is used. The

command for the call is:

[lon, lat, alt] = cspice_recgeo(state, re, f)

Both planetografic and planetodetic coordinates refers to the

reference ellipsoid but they have different nominal range.

At the given epoch satellite’s coordinates are:

altitude = 721.31 km long = -170.45 deg lat = 14.41 deg

Chapter III

63

2. Sun and Moon Illumination Angles

Post-EPS is a meteorological observation mission. In this thesis we

focus our attention on the radiometer mounted on the satellites,

known as Microwave Imaging/Sounding (MWI-MWS) system.

MWI-MWS is a multi-spectral microwave imager/sounding for

meteorology, oceanography, sea-ice/snow/land surface observation

and other climate applications.

The radiometer surveys Earth temperatures by means of measured

antennas output voltages. The antenna output voltage Va and the

relative temperature Ta are linked by the equation:

() offsetrecaoffsetsysa VTTGVTGV ++⋅=+⋅=

where G is the global gain, Tsys is radiometer system temperature

given by the antenna temperature Ta (which has to be measured) and

the receiver temperature Trec, Voffset is the offset voltage parameter.

Since receiver temperature and global gain are not stable due to

thermal variations, it’s necessary to calibrate the radiometer with two

referred temperatures (figure 3.6), a Hot Temperature and a Cold

Temperature, in order to get independent the relationship from these

variables.

Chapter III

64

TC THTA

VC

VH

VA

T

V

Figure 3.6: Example of Temperature calibration procedure: subscript c stands for cold and subscript h
stands for hot.

Using the equation above for the calibration procedure, the following

system can be written:

()
()
()⎪

⎩

⎪
⎨

⎧

++⋅=
++⋅=
++⋅=

offsetrechh

offsetrecaa

offsetreccc

VTTGV
VTTGV
VTTGV

which allows to reduce the equation in:

() cch
ch

ca
a TTT

VV
VVT +−

−
−

=

The hot calibration is obtained by means of a hot load (a sort of

black body) observation, while the cold calibration is obtained by

means of cold sky observations (where the well known 3 K of

microwave background radiation are foreseen).

The radiometer system requires two antennas: an antenna (Main

Antenna) pointing to the Earth collecting mission data and another

Chapter III

65

antenna (so called Sky Horn Antenna) pointing to the cold sky for

microwave background radiation observation.

The whole antennas system is shown in figure 3.7.

Figure 3.7: Post-EPS radiometer antennas configuration.

Temperature surveying and calibration measurements required a

high degree of accuracy and they are greatly affected by Sun and

Moon illumination angles respect to the measuring antennas:

sunbeams from the Sun or reflected by the Moon influences antennas

surveys, increasing the temperatures to measure and the noise on the

data collected. Since often it is not possible to avoid that sunbeams

impact on the reflectors it is extremely important to know the

Chapter III

66

illumination angles of these noise sources (Sun and Moon) for each

antenna of the system.

In order to retrieve Sun illumination angles (the same process has

been performed for the Moon) respect to the Main Antenna (the

process is the same for the Sky Horn antenna), we compute Sun

position in the Main Antenna reference frame using spkpos SPICE

routine. The Main Antenna reference frame is provided by the frame

kernel created in the precedent chapter (paragraph. 2.2). The three

components of the output vector are converted in azimuth-elevation

coordinates using recrad routine. For our analysis considering the

elevation complementary angle φ is more useful. Axes and angles

convention are shown in figure 3.8.

Figure 3.8: Antenna reference frame. Along the z-axis is reported the antenna pattern (main and side
lobes). AZ stands for azimuth, EL stands for elevation.

In this thesis the analysis of Sun and Moon has been performed on

antenna radiometer system considering a period of propagation of

one year.

Chapter III

67

Figures 3.9 and 3.10 report the results obtained in this thesis for Sun

and Moon illumination azimuth angle and complementary of

elevation angle respect to the Main Antenna.

Figure 3.9: Sun illumination azimuth (in blue) and elevation complementary angle (in green) angle
versus orbital time for Post-EPS radiometer Main Antenna.

Chapter III

68

Figure 3.10: Moon illumination azimuth (in blue) and elevation complementary angle (in green) angle
versus orbital time for Post-EPS radiometer Main Antenna.

In analysis of results it has to pay attention on complementary of

elevation angle (φ): in particular for small angles, when sunbeams

have a bigger intersection area with the antenna pattern, especially

concerning with the main lobe. We notice that Sun unsuitable angles

for the Main Antenna repeats about every 183 days, and Moon

unsuitable angles about every 15 days.

Figures 3.11 and 3.12 report the results obtained in this thesis for

Sun and Moon illumination azimuth and elevation angles respect to

the Sky Horn Antenna.

Chapter III

69

Figure 3.10: Sun illumination azimuth (in blue) and elevation complementary angle (in green) angle
versus orbital time for Post-EPS radiometer Sky Horn Antenna.

Figure 3.12: Moon illumination azimuth (in blue) and elevation complementary angle (in green) angle
versus orbital time for Post-EPS radiometer Sky Horn Antenna.

Chapter III

70

Analyzing angles plot, Sun unsuitable angle for the Sky Horn repeats

about every 183 days, and Moon unsuitable angles about every 15

days.

3. Coverage analysis

Coverage analysis is required in order to know in how many time the

antenna sweeps the whole globe surface. Coverage mission

requirements affect spacecraft’s altitude, design parameters, payload

final performances. Coverage analysis takes into account swath

width, the area covered by the scan angle on the ground, antenna

boresight orientation, FOV shape (Fig 3.13)

Figure 3.13:Antenna’s coverage parameters.

Chapter III

71

All these informations are provided to SPICE system by an

instrument kernel. Since Sky Horn Antenna performs only

calibration measurements, it is not involved in pointing problems,

and for this reason coverage has been analysed only for Main

Antenna.

Srfxpt SPICE routines allows to compute the surface intercept point

of a specified ray on a target body at a specified epoch, optionally

corrected, given an observer and a direction vector defining a ray.

The command for the call is:

[spoint, dist, trgepc, obspos, found]=cspice_srfxpt(method, targ, et,

abcorr, obs, dref, dvec)

where spoint is the intercept point on the target, dist is the distance

between the observer and surface intercept, trgepc is the intercept

epoch, obspos is the observer position in target body-fixed reference

frame, found is a logical flag indicating if rays intercept the surface,

method provides observer surface approximation (at the moment

only ‘ELLIPSOID’ is supported), dref is the reference frame in

which dvec is defined, dvec indicates the vectors starting from the

observer. Estimated the intercept point, another routine flags on a

grid map the intercept point plotting results.

Considering a swath of 1000 km, the plots in figures 3.14, 3.15 and

3.16 show coverage analysis respectively for 12, 24 and 48 hours of

propagation and the related coverage ratio.

Chapter III

72

Figure 3.14: Coverage analysis and coverage ratio for Post-EPS mission in 12 h of propagation.

Figure 3.15: Coverage analysis and coverage ratio for Post-EPS mission in 24 h of propagation.

Chapter III

73

Figure 3.16: Coverage analysis and coverage ratio for Post-EPS mission in 48 h of propagation.

Referring to the figures 3.14, 3.15 and 3.16 we notes that the full

coverage (more than 90%) is reached in 48 hours.

Annex I

74

 ANNEX I: SPICE missions

NAIF has developed mission SPICE kernel through several years to

make easier scientists’ and engineers’ work and to share a set of

scientific informations with several partners. SPICE system dates

from about 1991, but some kernels of past missions are still

available. As of this writing the missions available on NAIF server

are listed below.

• APOLLO. This set of data contains only a very short piece of Moon

mission Apollo 15 (07/30/1971 to 08/01/1971) trajectory data in

SPK format and frame kernels.

• CASSINI. This set contains all kernels regularly produced by the

project of Cassini-Huygens American-European mission (1997-

present) studying Saturn and its moons.

• CLEMENTINE. All type of kernels are available for the Clementine

mission (02/1994 to 05/1994) officially called Deep Space Program

Science Experiment (DSPSE) observing Moon and near-Earth

asteroid 1620 Geographos .

• CONTOUR. This set of data provides kernels for the Comet Nucleus

Tour (CONTOUR). Since the spacecraft was lost soon after the

launch (07/2002), data available are the originally planned trajectory,

the ephemerides for the mission’s target bodies and the frame

kernels.

• DAWN. This set consists of the planning and operations kernels

produced for Down mission (09/2007-present) travelling forward

the asteroid Vesta and the dwarf planet Ceres.

Annex I

75

• DEEP IMPACT. This set of data provides the planning and

operations SPICE kernels for the Deep Impact and EPOXI missions

(1/2005-present) studying the composition of the interior of the

comet 9P/Tempel by colliding a section of the spacecraft into the

comet.

• DS1.This set contains all types of kernels for the Deep Space I

mission (10/24/1998 to 12/18/2001) testing technologies to lower the

cost and risk of future missions.

• FIDO. This set contains only a frame kernels for the FIDO

Experimental Rover. These kernels were created in 1999-2000

during an unfinished attempt to implement SPICE for that vehicle.

• GLL. This set contains uncompleted kernels for Galileo mission

(10/1989 to 09/2003) studying Jupiter.

• GNS. This set provides kernels regularly produced for Genesis

mission (2001-present) studying solar wind.

• HAYABUSA. This set provides only SPK for HAYABUSA

Japanese mission (2003-present) studying a small near-Earth asteroid

named 25143 Itokawua.

• HST. This set contains only orbit data in SPK format of the Hubble

Space Telescope (04/1990-present).

• IEU. This set consists of only selected trajectory data in SPK format

of International Ultraviolet Explorer American-European mission

(01/1978 to 07/2000) studying ultraviolet spectra.

• JUNO. This set consists of only SPK for the future mission Juno

planned for 2011.

• LPM. This set provides only SPK orbit data for Lunar Prospector

Mission (01/1998-07/1999).

Annex I

76

• LUNARORBITER. Also this set contains only SPK for Lunar

Orbiter mission (1966-1968).

• M01. This set contains all kernels regularly produced by the project

of 2001 Mars Odyssey mission (2001-present).

• M10. This set contains a single one SPK for the mission Mariner 10

(11/1973 to 03/1975) studying mercury and Venus. The available

kernel covers only from 03/24/1974 to 04/04/1974, which is the

period of the first Mercury flyby.

• M9. This set contains a single SPK kernel and an SCLK kernel for

the mission Mariner 9 (05/1971 to 10/1972).

• MCO. This set provides all kernels produced by the project Mars

Climate Orbiter (12/1998 to 10/1999) during the cruise to Mars

before being destroyed.

• MER. This set contains kernels regularly produced for the mission

Mars Exploration Rovers (2003-present).

• MESSENGER. This set contains all kernels for Messenger mission

(08/2004 -present) studying Mercury.

• MEX. This set contains kernels regularly produced for the European

mission Mars Express (06/2003-present) .

• MGN. This set provides only SPK kernels produced for Magellan

mission (08/1990 to 08/1994) studying Venus.

• MGS. This set contains kernels for the mission Mars Global

Surveyor (11/1996 to 11/2006).

• MPF. This set contains all kernels archived for the mission Mars

Pathfinder (12/1996 to 03 1998)

• MPL. This set provides SPK kernels produced for the mission Mars

Polar Lander (01/1999-12/1999). Also kernels produced in

Annex I

77

anticipation of a successful landing (which didn’t occur since the

spacecraft was destroyed) are available.

• MRO. This set provides kernels for the mission Mars

Reconnaissance Orbiter (03/2006-present).

• MSL. This set consists only of SPK and FK kernels produced for the

future mission Mars Science Laboratory planned for 2011.

• NEAR. This set contains kernels produced for Near Earth Asteroids

(02/1996 to 02/2001).

• NOZOMI. This set provides only trajectory data for Nozomi

Japanese mission (02/1999 to 01/2004). Data coverage is from the

launch to the slightly flyby of Mars due to inability to perform orbit

insertion in Mars.

• PHOBOS. This set consists only of two trajectory data in SPK

format produced for the Russian mission Phobos 88 (01/1989 to

03/1989), before contacts with the spacecraft was permanently lost

during Mars orbit.

• PHOENIX. This set provides all kernels produced for PHOENIX

mission studying Mars (08/2007-present).

• PIONEER 10. This set contains a single SPK file for the spacecraft,

Jupiter, the Galilean satellites, Earth and Sun produced for the

mission Pioneer 10 (03/1972-undefined) studying deep space. It’s a

merge of several SPK. Data are provided from the launch to

01/1990.

• PIONEER 11. This set contains a single SPK file for the spacecraft,

Jupiter, the Galilean satellites, Earth and Sun produced for the

mission Pioneer 11 (04/1973-undefined) studying deep space. It’s a

merge of several SPK. Data are provided from the launch to

01/1990.

Annex I

78

• PIONEER 6. This set contains a single SPK file for the spacecraft,

the planets, the Earth and the Sun produced for the mission Pioneer 6

(12/1965-undefined) studying deep space. It’s a merge of several

SPK. Data are provided from 01/1996 to 12/1999.

• PIONEER 8. This set contains a single SPK file for the

spacecraftand the Earth produced for the mission Pioneer 8

(12/1967-undefined) studying deep space. It’s a merge of several

SPK. Data are provided from 07/1997 to 12/1999.

• ROCKY 7. This set contains kernels for Rocky 7 Experimental

Rover field test (05/1997). These kernels were created to

demonstrate the applicability of SPICE for a rover mission.

• ROSETTA. This set provides all kernels for Rosetta European

mission (03/2004-present), studying the comet 67P/Churyumov-

Gerasimenko.

• SDU. This set provides all kernels regularly produced for Stardust

mission (02/1999-01/2006) investigating the makeup of the comet

Wild 2 and its coma.

• SELENE. This set will contain kernels produced for Selene Japanese

mission (09/2007-present).

• SIRTF. This set provides SPK and SCLK kernels produced for the

Space Infrared Telescope Facility, SIRTF, mission (08/2003-

present).

• SMART1. This set contains all kernels produced for Small Missions

for Advanced Research in Technology, SMART, European mission

(09/2003 to 09/2006).

• ULYSSES. This set contains only trajectory data in SPK format

produced for the Ulysses American-European mission (10/1990 to

06/2008) studying the Sun at all latitudes.

Annex I

79

• VEGA. This set provides a single SPK for the Russian Vega1

(12/1984-present) and Vega 2 (12/1984-present) spacecraft and the

comet Halley during their flyby. Data are provided from 03/01/1986

to 03/17/1986.

• VEX. This set provides all kernels for Venus Express European

mission (10/2005-present).

• VIKING. This set provides all kernels for the two Viking orbiters

and two SPK for the landed location of the Viking Landers (1975 to

1982), studying Mars.

• VOYAGER. This set provides a volatile and eclectic collection of

kernels made from assorted data produced by Voyager missions

(1977-undefined) studying deep space. Data are provided from

07/1997 to 2050.

Annex II

80

 ANNEX II: Setup File Generation

The required assignments in a setup file are:

INPUT_DATA_FILE = 'input ephemeris data file name'

OUTPUT_SPK_FILE = 'output SPK file name'

INPUT_DATA_TYPE = 'STATES' or 'ELEMENTS' or

 'EQ_ELEMENTS' or 'TL_ELEMENTS'

OUTPUT_SPK_TYPE = 5 or 8 or 9 or 10 or 12 or 13 or 15 or 17

OBJECT_ID = numeric code assigned to the object.

Either OBJECT_ID or OBJECT_NAME is

to be used. If this assignment is absent if

this OBJECT_NAME is required. If NAIF

has not assigned an ID code the user may

select a temporary ID. This ID must be a

negative number for a spacecraft.

OBJECT_NAME = 'NAIF supported object name'

 The name has to be NAIF supported for

 the object. This keyword is required if

 the OBJECT_ID keyword is absent. If

Annex II

81

 both keywords are present, the MKSPK

 program uses the OBJECT_ID and

 ignores this assignment.

CENTER_ID = numeric code assigned to the body which

is the center of the motion for the object.

If this keyword is absent, the

CENTER_NAME keyword must be used.

CENTER_NAME = 'NAIF supported body name'

This is one if the NAIF supported names

for the center of motion. This keyword

is required if the CENTER_ID keyword

is absent. If both keywords are present

the MKSPK program uses the

CENTER_ID and ignores this

assignment.

REF_FRAME_NAME = 'reference frame name'

 If this is not a standard frame supported

 by NAIF, the definition for this frame

 must be present in a frame definition

 kernel file specified in the

 FRAME_DEF_FILE keyword.

Annex II

82

PRODUCER_ID = 'producer identifier'

DATA_ORDER = 'ordered list of input parameter names'

 The names must be delimited with white

 Space.

DATA_DELIMITER = 'delimiter separating input data items'

 User can select : 'TAB', 'EOL', comma

 (','), semicolon (';') or white space

 (' '). Only one of these values can be

 used.

LEAPSECONDS_FILE = 'leapseconds file name'

More assignments may be needed depending on the data type and

other conditions. The conditional assignments are:

PCK_FILE = ('PCK_1 file name'

 'PCK_2 file name'

 ...

 'PCK_n file name')

 This keyword may be absent in the case

 when you do not need PCK

 constants or when these constants are

 defined with other setup keywords.

FRAME_DEF_FILE = 'frame definition file name'

Annex II

83

 This keyword is required

 REF_FRAME_NAME keyword is absent. In

 this case the frame must be defined in a

 frames definition kernel file.

COMMENT_FILE = 'comment file name'

INPUT_DATA_UNITS = ('ANGLES = angle unit'

 'DISTANCES= distance unit')

MKSPK recognizes: RADIANS,

DEGREES, ARCMINUTES,

ARCSECONDS, HOURANGLE,

MINUTEANGLE, SECONDANGLE,

METERS, KM, CM, MM, FEET,

INCHES, YARDS, STATUTE_MILES,

NAUTICAL_MILES, AU, PARSECS,

LIGHTSECS, LIGHTYEARS. Note that

 MKSPK assumes that the time units of

 any input data parameters or constants

 specified in the setup file are seconds.

EPOCH_STR_LENGTH = length of epoch string.

 This length must be provided to the

 program in order to enable parsing of the

Annex II

84

 input data records containing two epoch

 strings.

IGNORE_FIRST_LINE = number of initial lines to be ignored

 while reading input file

LINES_PER_RECORD = number of lines in one input record

TIME_WRAPPER = '# time wrapper'

 This assignment is the specification of

 alphanumeric characters that are used to

define the "EPOCH" strings. As example,

'# TDT' or '# ETSECONDS'.

START_TIME = 'start time'

 If this value is absent the MKSPK

 program calculates it using data

STOP_TIME = 'stop time'

 If this value is absent the MKSPK

 program calculates it using data

PRECESSION_TYPE = 'NO PRECESSION' or

 'APSIDE PRECESSION ONLY' or

 'NODE PRECESSION ONLY' or

 'APSIDE AND NODE PRECESSION'

POLYNOM_DEGREE = polynomial degree of Lagrange or

Annex II

85

 Hermite interpolation

CENTER_GM = center GM value.

 If it is absent, the MKSPK program

 attempts to find this value in a PCK file.

CENTER_POLE_RA = the right ascension of the center's north

 pole given with respect to the reference

 frame.

CENTER_POLE_DEC = the declination of the center's north pole

given with respect to the reference

frame.

CENTER_J2 = center's J2 value.

 If it is absent, the MKSPK program

 attempts to find this value in a PCK file.

CENTER_EQ_RADIUS = center's equatorial radius.

 If it is absent, the MKSPK program

 attempts to find this value in a PCK file.

SEGMENT_ID = 'segment identifier'

APPEND_TO_OUTPUT = flag indicating whether new segments

 should or shouldn't be appended to an

 existing SPK file. This keyword can be

 'YES' or 'NO' .

Annex III

86

 ANNEX III: Orbital Propagator for Post EPS

mission

%***
%******** Orbital propagator for Post-EPS mission ********
%***
%********************* Start of Header *********************
% PROGRAM NAME: propag_SSO.m
% DATE: 09 March 2009
% VERSION: 1.0
% PURPOSE: This program computes

 % satellite’s coordinates and
% velocities in ECEF frame and
% create an ephemeris text file.
%
% INPUT ARGUMENTS: Orbital parameters, initial
% propagation date,
% propagation days and
% propagation step time.
%
% OUPUT ARGUMENTS: ephemeris text file
%
% AUXILIARY SUBROUTINES: SPICE routines
%********************** End of Header **********************
%***

%service operation

 clc
 clear all
 close all
 current_directory=pwd;
 addpath(strcat(current_directory,'\mice\src\mice'));
 addpath(strcat(current_directory,'\mice\lib'));
 cspice_kclear

% Universal, Earth and orbital constants

 %Earth rotation velocity [rad/s]
 omegaearth=7.2921158553e-5;
 %gravitational parameter [Km^3/s^2]
 mi=398600.4415 ;
 J2=0.0010826269;
 %mean Earth equatorial radius [km]
 Req=6378.13649;
 %Sun precession [deg/day]

Annex III

87

 alfapuntosun=0.985647332;

%orbital parameters and initial values

 %height [Km]
 H = 720;
 %satellite orbital radius [km]
 a=Req+H;
 %propagation days
 Nd = 10;
 %time step [sec]
 dt = 10;
 %initial propagation date
 str= '12 FEB 2009 12:00:00';
 %initial true anomaly [rad]
 niC(1)=0;
 %longitude of the ascending node [rad]
 OMC=37.5*cspice_rpd;
 %argument of the periapsis [rad]
 omC=90*cspice_rpd;
 %eccentricity 0.00118;
 eC=0;
 %major semi-axis [km]
 aC=a;
 %minor semi-axis [km]
 bC=aC*sqrt(1-eC^2);
 %mean motion [rad/sec]
 n=sqrt(mi/(a^3));
 % mean orbital period [s];
 T = 2*pi/n;
 %Keplerian period [s]
 perkeps=2*pi/n;

% compute orbital inclination

 %Sun precession convertion in [rad/sec]
 alfapuntosun=(alfapuntosun*(pi/180))/(3600*24);
 inc=acos(alfapuntosun/(-3/2*J2*sqrt(mi/a^3)*(Req/a)^2));

%time vector creation

 t = 0:dt:Nd*86400;
 npunti=length(t);

%time conversion using SPICE routines

 cspice_furnsh= …
 strcat(current_directory,'\mice\lib\naif0009.tls');
 et = cspice_str2et(str);

%Initial values for eccentric and mean anomaly

 sinEC0=sqrt(1-eC^2)*sin(niC(1))/(1+eC*cos(niC(1)));

Annex III

88

 cosEC0=(eC+cos(niC(1)))/(1+eC*cos(niC(1)));
 EC(1)=atan2(sinEC0,cosEC0);
 MC(1)=EC(1)-eC*sin(EC(1));

%compute mean and eccentric anomaly

 for it=2:npunti
 MC(it)=MC(it-1)+n*dt;
 %Newton beginning
 dEC=1;
 iter=1;
 ECtry(iter)=MC(it);
 while dEC>10^-6 && iter<10
 iter=iter+1;
 ECtry(iter)=ECtry(iter-1)-(ECtry(iter-1)-eC*sin

 (ECtry(iter-1))-MC(it))/(1-eC*cos(ECtry(iter-1)));
 dEC=(ECtry(iter)-ECtry(iter-1))/ECtry(iter-1);
 end
 EC(it)=ECtry(iter);
 sinniC=sin(EC(it))*sqrt(1-eC^2)/(1-eC*cos(EC(it)));
 cosniC=(cos(EC(it))-eC)/(1-eC*cos(EC(it)));
 niC(it)=atan2(sinniC,cosniC);
 time(it)=(it-1)*dt;
 end

 %satellite ECI position [km]

 radiusC=aC*(1-eC*cos(EC));
 satposX=radiusC.*(cos(omC+niC).*cos(OMC)-sin(omC+niC).
 *sin(OMC).*cos(inc));
 satposY=radiusC.*(cos(omC+niC).*sin(OMC)+sin(omC+niC).
 *cos(OMC)*cos(inc));
 satposZ=radiusC.*sin(omC+niC).*sin(inc);

%Coefficients for velocity computations

 l_1=cos(OMC)*cos(omC)-sin(OMC)*sin(omC)*cos(inc);
 m_1=sin(OMC)*cos(omC)+cos(OMC)*sin(omC)*cos(inc);
 n_1=sin(omC)*sin(inc);
 l_2=-cos(OMC)*sin(omC)-sin(OMC)*cos(omC)*cos(inc);
 m_2=-sin(OMC)*sin(omC)+cos(OMC)*cos(omC)*cos(inc);
 n_2=cos(omC)*sin(inc);

%Satellite ECI velocity [km/s]

 satvelX=n*aC./radiusC.*(bC.*l_2.*cos(EC)-aC.*l_1.
 *sin(EC));
 satvelY=n*aC./radiusC.*(bC.*m_2.*cos(EC)-aC.*m_1.

 *sin(EC));
 satvelZ=n*aC./radiusC.*(bC.*n_2.*cos(EC)-aC.*n_1.
 *sin(EC));

%conversion from ECI to ECEF

Annex III

89

 %rotation velocity of ECEF with respect to ECI
 w=[0;0;omegaearth];
 to=t(1);
 for it=1:npunti
 t_k=t(it);
 theta(it)=omegaearth*(t_k-to);
 %transformation matrix
 R(1,:)=[cos(theta(it)),sin(theta(it)),0];
 R(2,:)=[-sin(theta(it)),cos(theta(it)),0];
 R(3,:)=[0,0,1];
 satpos=[satposX(it),satposY(it),satposZ(it)];
 satvel=[satvelX(it),satvelY(it),satvelZ(it)];
 satposECEF(:,it)=R*satpos';
 satvelECEF(:,it)=R*satvel';
 end

%print ephemeredes in output file

 eph= fopen('ephemerisdata.txt','wt');
 EPHEMERIS = [time+et;satposECEF;satvelECEF];
 for ii = 1:npunti
 for kk=1:7
 fprintf(eph,'%12.6f\t',EPHEMERIS(kk,ii));
 end
 fprintf(eph,'\n');
 end
 fclose (eph);
 type ephemerisdata.txt

Annex IV

90

 ANNEX IV: Frame Kernel Generation

The required assignments in a two vectors frame kernel are:

FRAME_<f_name> = <f_ID>

The numeric code

assigned to the reference

frame.

FRAME_<f_ID>_NAME = <f_name>

The name chosen for the

frame must not exceed 26

characters.

FRAME_<f_ID>_CLASS = The numeric code that

 identifies the class frame

FRAME_<f_ID>_CLASS_ID = <f_ID>

FRAME_<f_ID>_CENTER = <spacecraft_ID>

 The numeric code for the

object chosen as the

center of the new

reference frame. This

Annex IV

91

assignment allows to

connect an object to his

body-fixed frame.

FRAME_<f_ID>_RELATIVE = 'Reference frame name'

The reference frame

name the new frame is

oriented with.

FRAME_<f_ID>_DEF_STYLE = 'PARAMETERIZED'

FRAME_<f_ID>_FAMILY = 'TWO-VECTOR'

 Or 'MEAN_EQUATOR_AND_EQUINOX_OF_DATE'

 Or 'TRUE_EQUATOR_AND_EQUINOX_OF_DATE'

 Or 'MEAN_ECLIPTIC_AND_EQUINOX_OF_DATE'

 Or 'EULER'

FRAME_<f_ID>_PRI_AXIS = 'First axis'

FRAME_<f_ID>_PRI_VECTOR_DEF = 'Primary vector'

 Suitable chances are:

 'OBSERVER_TARGET_POSITION'

 'OBSERVER_TARGET_VELOCITY'

 'TARGET_NEAR_POINT'

 'CONSTANT'

FRAME_<f_ID>_PRI_FRAME = 'Reference frame name'

Annex IV

92

Reference frame name

the primary vector is

defined in.

FRAME_<f_ID>_PRI_OBSERVER = 'Observer’s name'

FRAME_<f_ID>_PRI_TARGET = 'Target’s name'

FRAME_<f_ID>_PRI_ABCORR = 'Flag for corrections'

FRAME_<f_ID>_SEC_AXIS = 'Second axis'

FRAME_<f_ID>_SEC_VECTOR_DEF = 'Secondary vector'

Suitable chances are:

 'OBSERVER_TARGET_POSITION'

 'OBSERVER_TARGET_VELOCITY'

 'TARGET_NEAR_POINT'

 'CONSTANT'

FRAME_<f_ID>_SEC_FRAME = 'Reference frame name'

Reference frame name

the secondary vector is

defined in.

FRAME_<f_ID>_SEC_OBSERVER = 'Observer’s name'

FRAME_<f_ID>_SEC_TARGET = 'Target’s name'

FRAME_<f_ID>_SEC_ABCORR = 'Flag for corrections'

Annex IV

93

For TK frames the assignments are:

FRAME_<f_name> = <f_ID>

FRAME_<f_ID>_NAME = <f_name>

FRAME_<f_ID>_CLASS = class ID

FRAME_<f_ID>_CLASS_ID = <f_ID>

FRAME_<f_ID>_CENTER = <spacecraft_ID>

TKFRAME_<f_ID>_RELATIVE = 'Relative frame name'

TKFRAME_<f_ID>_SPEC = 'MATRIX'

 or 'ANGLES'

 or 'QUATERNION'

According to the choice, in the following each specification is

described.

To define a rotation using a matrix, the assignments are:

TKFRAME_<f_ID>_SPEC = 'MATRIX'

TFRAME_<f_ID>_MATRIX = (matrix_value [1][1],

 matrix_value [2][1],

 matrix_value [3][1],

 matrix_value [1][2],

 matrix_value [2][2],

 matrix_value [3][2],

Annex IV

94

 matrix_value [1][3],

 matrix_value [2][3],

 matrix_value [3][3])

To define a rotation using a Euler angles (positive

counterclockwise), the assignments are:

TKFRAME_<f_ID>_SPEC = 'ANGLES'

TKFRAME_<f_ID>_ANGLES = (angle1, angle2, angle3)

TKFRAME_<f_ID>_AXES = (axis 1, axis 2, axis 3)

 The axes must be chosen

 from the set of integers

 1,2,3 where 1 stands for

 the x-axis, 2 for the y-

 axis, and 3 for the z-axis.

TKFRAME_<f_ID>_UNITS = 'angle units'

Annex V

95

 ANNEX V: Instrument Kernel Generation

The required assignments for instrument kernels are:

INS<in_ID>_FOV_SHAPE = 'CIRCLE'

or 'ELLIPSE'

or 'RECTANGLE'

or 'POLYGON'

The instrument ID must

be a negative number.

INS<in_ID>_FOV_FRAME = 'Reference frame'

 The name of the

 reference frame the

 boresight and the

 boundary vectors are

 defined in.

INS<in_ID>_BORESIGHT = (X, Y, Z)

In the case of explicit boundary vectors definition:

Annex V

96

INS<in_ID>_FOV_CLASS_SPEC = 'CORNERS'

INS<in_ID>_FOV_BOUNDARY_CORNERS = (X1, Y2, Z3,

… … …

Xn, Yn, Zn)

In the case of half angles extents definition:

INS<instr_ID>_FOV_CLASS_SPEC = 'ANGLES'

INS<instr_ID>_FOV_REF_VECTOR = (X, Y, Z)

Reference vector that,

together with the

boresight vector, define

the plane in which the

half angle is measured.

INS<instr_ID>_FOV_REF_ANGLE = halfangle1

INS<instr_ID>_FOV_CROSS_ANGLE = halfangle2

This angle is measured

in the plane normal to

last plane and containing

the boresight vector.

INS<instr_ID>_FOV_ANGLE_UNITS = 'angle units'

Acknowledgments

97

 CONCLUSIONS

In this thesis an analysis of source noise and coverage of the

radiometer which will be installed on board of MetOp satellite for

Post-EPS mission has been performed by means of a tool developed

in MATLAB software language. The tool takes great advantage of

SPICE routines creating a powerful and useful source for

geometrical and radiometric analysis. SPICE is a library, provided

by the NAIF node of NASA Planetary Data System, which allows

scientists and engineers to share data analysis and scientific results

come from past mission to improve future mission analysis.

This study has pointed out how powerful and high level

performances SPICE system is. Creating apposite kernels and using

SPICE “built-in” routines we have developed a complete software

that with few basic inputs, such as orbital and propagation

parameters, retrieve geometrical and instrumental data fundamental

for mission analysis. Figure C.1 summarises software structure

showing required inputs and the logical steps developed and

automated to retrieve needed results. Kernels required are: SPICE

kernels (in green) provided by SPICE itself and kernels appositely

created in order to conduce the analysis (in blue). Moreover, all

routines enclosed in blue rectangles are already provided by SPICE

system, while routines in yellow rectangles are not provided by

NAIF.

This thesis has been focused on the computation and analysis of Sun

and Moon illumination angles on radiometer’s antennas and

Acknowledgments

98

instrument coverage. These analyses are very important for mission

success: sunbeams come from the Sun or reflected by the Moon

influences antennas surveys, increasing the temperatures to measure

and the noise on the data collected. Since often it is not possible to

avoid that sunbeams impact on the reflectors it is extremely

important to know the illumination angles of these noise sources

(Sun and Moon) for each antenna of the system. Also coverage

analysis is fundamental: coverage mission requirements affect

spacecraft’s altitude, design parameters and payload final

performances. As reported in chapter 2, for Post-EPS mission the

full coverage (more than 90%) is reached in 48 hours.

Regarding to the developed software, it has the advantage of

remaining valid also for different mission frameworks employing

pointing problems, changing instrument and mission parameters. Of

course the implementation in the future of a more detailed orbital

propagator will allow to analyze better mission performances and

consequently to get better instrumental analysis.

Acknowledgments

99

Figure C1: logical summary of the developed software.

Acknowledgments

100

 ACRONYMS

API: Application Programming Interface

ASCII: American Standard Code for International Interchange

AU: Astronomical Unit

AZ: AZimuth

CK: Camera Kernel

CONTOUR: COmet Nucleus TOUR

DEC: Declination

DS: Deep Space

DSPSE: Deep Space Program Science Experiment

ECEF: Earth Centered Earth Fixed

ECI: Earth Centered Inertial

EK: Event Kernel

EL: ELevation

EPS: EUMETSAT Polar System

ET: Ephemeris Time

EUMETSAT: European Organisation for the Exploration of

 Meteorological Satellites

FES2004: Finite Element Solution tidal atlates 2004

FK: Frame Kernel

Acknowledgments

101

FOV: Field Of View

GGM02: GRACE Gravity Model 2002

GLL: Galileo

GNS: Genesis

GOS: Global Operational Satellite Observation System

HST: Hubble Space Telescope

IAU: International Astronomical Union

ICFR: International Celestial Reference Frame

IEU: International Ultraviolet Explorer

IJPS: Initial Joint Polar-Orbiting Operational Satellite System

IK: Instrument Kernel

LEO: Low Earth Orbit

LLR: Lunar Laser Range

LPM: Lunar Prospector Mission

LTDN: Local Time of Descending Node

MCO: Mars Climate Orbiter

MDA: Modified Difference Arrays

MER: Mars Exploration Rover

MetOP: Meteorological Operational

MEX: Mars Express

MEX: Matlab External Interface

Acknowledgments

102

MGN: Magellan

MGS: Mars Global Surveyor

MO: Mars Odyssey

MPF: Mars PathFinder

MPL: Mars Polar Lander

MRO: Mars Reconnaissance Orbiter

MSL: Mars Science Laboratory

MWI: MicroWave Imaging

MWS: MicroWave Sounding

NAIF : Navigation and Ancillary Information Facilities.

NOAA: National Oceanic an Atmospheric Administration

NWP: Numerical Weather Prediction

PDS: Planetary Data System.

PCK: Planet Constant Kernel

PPN: Parameterized Post Newtonian formalism

RA: Right Ascension

SCL: Spacecraft Clock

SIRTF: Space InfraRed Telescope Facility

SMART: Small Missions for Advanced Research in Technology

SPICE: Spacecraft Planet Instrument C-matrix Events

SPK: Spacecraft Kernel

Acknowledgments

103

SSB: Solar System Barycentre

SSO: Sun-Synchronous Orbit

TAI: International Atomic Time

TDB: Barycentric Dynamical Time

TDT: Terrestrial Dynamical Time

TK: Text Kernel

UT: Universal Time

UTC: Coordinated Universal Time

VEX: Venus EXpress

Acknowledgments

104

 BIBLIOGRAPHY

[1]: C. Acton, N. Bachman, L. Elson, B. Semenov, F. Turner, E.

Wright,

Caltech/Jet Propulsion Laboratory Extending NASA’s SPICE

Ancillary Information System to Meet Future Mission Needs

[2]: http://www.astronomy.swin.edu.au , last visit March 2009

[3]: R.R. Bate, D.D. Mueller, J.E. White, Fundamentals of

Astrodynamics, Dover Publications

[4]: Bureau International des Poids et Mesures

(http://www.bipm.org), last visit February 2009

[5]: http://www.eumetsat.int , last visit March 2009

[6]: W.M. Folkner, J.G. Williams, D.H. Boggs, Jet Propulsion

Laboratory, The Planetary and Lunar Ephemeris DE 421,

Memorandum IOM 343R-08-003, 03/31/2008

[7]: F. Lyard, F. Lefevre, T. Letellier ,O. Francis, Modelling the

global ocean tides: modern insights from FES2004, Ocean

Dynamics Journal

[8]: http://www.oc.nps.navy.mil , last visit March 2009

[9]: PDS website (http://www.pds.jpl.nasa.gov), last visit March

2009

Acknowledgments

105

[10]: http://scienceworld.wolfram.com , last visit February 2009

[11]: Spice Tutorials

(ftp://naif.jpl.nasa.gov/pub/naif/toolkit_docs/Tutorials), last visit

March 2009

[12]: Tapley, J. Ries, S. Bettadpur, D. Chambers, M. Chengs, F.

Condi, B. Gunter, Z. Kang, P. Nagel, R. Pastor, T. Pekker, S.

Poole, F. Wang, GGM02 – An improved Earth gravity field

model from GRACE, Journal of Geodesy (2005), DOI

[13]: Thales Alenia Space, Phase-0 Study of the Post-EPS Mission,

October 2008 (internal report)

[14]: Wikipedia (http://www.wikipedia.en), last visit March 2009

[15]: J.G. Williams, D.H. Boggs, W.M. Folkner, Jet Propulsion

Laboratory, DE421 Lunar Orbit, Physical Librations, and

Surface Coordinates, INTEROFFICE MEMORANDUM, IOM

335-JW,DB,WF-20080314-001, 03/14/2008

Acknowledgments

106

 ACKNOWLEDGMENTS

This is perhaps the hardest chapter to write, but at the same time the

easiest and the more expected: this means I’ve reached the end. Few

steps separate me from the goal and I find myself thinking on the

progress done. Reached the end, always we think about the

beginning, how everything started: how a news, seen by children

eyes, opened the doors of a world of curiosity and research. The

news was that the Voyager probe had transmitted telemetric data

from his remote position keeping moving away from the Solar

System. A dossier dealing with Voyager missions followed the news.

I paid particular attention to the golden record onboard the

spacecraft, a trace of our existence in the universe. I was affected by

at that time president Carter’s speech: “We cast this message into the

cosmos…Of the 200 billion stars in the Milky Way galaxy, some-

perhaps many-may have inhabited planets and space faring

civilizations. If one such civilization intercepts Voyager and can

understand these recorded contents, here is our message: We are

trying to survive our time so we may live into yours. We hope some

day, having solved the problems we face, to join a community of

Galactic Civilizations. This record represents our hope and our

determination and our goodwill in a vast and awesome universe”. I

imagined how a non-human could see, read, hear, and interpret the

message arrived from a far away point in the universe, discover the

existence of other living forms, how to reach our planet studying that

beams (later on I understand the meaning of that pulsar of known

Acknowledgments

107

directions from our Sun). That was the sparkle that have brought me

thus far. Keeping on growing my knowledge and my curiosity, I

decided to convert my passion in my studies and future work.

I want to express my gratitude to my thesis supervisor, prof. Marco

D’Errico. I remember how during the course of Astrodynamic

encouraged us with his words: “You will not become common

engineers…you will be engineers with an ‘E’ so big ”, showing with

his hands the dimension of a fictitious big ‘E’. He continually moved

us in doing our better, saying that we should have earned that big

‘E’. With his enthusiasm, his inspiration, his criticism, and his great

efforts to explain things clearly and simply, he has made me

mentally grow and love orbital mechanics. I’m sorry that after this

thesis I can’t momentarily keep on my studies with him hoping to

join him again in the future.

I’m grateful to the whole team met at CO.RI.S.T.A., in particular to

my tutor, Dr Maria Rosaria Santovito, who, with her wide

knowledge, understanding, encouraging and personal guidance, has

been great value for me and has provided good basis for the present

thesis. I’d like to thanks also Dr Giulia Pica for her company and

our “tea break”, Eng. Gianni Alberti, my “adoptive tutor”, and

Matlab Man, Eng. Claudio Papa, with his software assistance.

I’m deeply grateful to my special friends Eliana e Sofia, pillars of

my university career and of my live. We have shared good times and

epic exams, always with the same strength and will. They have

supported me especially during last months, encouraging, bearing

and helping me in overcoming several difficulties and moods. This

thesis would not have been possible without them. During this

training I’ve felt lost without their good cheer and company.

Acknowledgments

108

Thanks also to all my friends. A special thank goes to Tatore’s

Angels (Lorena, Lidia and Antonella) even though they are odious

when they call me together with their screeching voices (this is not a

vivid e real thank since they have paid me to be named in this

acknowledgments!!!).

I thanks my grandparents for their support and their pride and

interest for my studies. They always asks me what I’m studying and

which exam I’m preparing: each time I try to let them understand

with few and simple words. After all Albert Einstein said that you do

not really understand something unless you can explain it to your

grandmother!!!

In the end, just to give them the importance they deserve, I thanks

my parents for what they do for me: my mother whose love is

boundless and my father, with his ingeniousness and

meticulousness, who is my role model. There are not words to thanks

them enough…I will be always indebted with them.

Aversa, March 27 2009

